中英文翻譯邊坡穩(wěn)定_第1頁
中英文翻譯邊坡穩(wěn)定_第2頁
中英文翻譯邊坡穩(wěn)定_第3頁
中英文翻譯邊坡穩(wěn)定_第4頁
中英文翻譯邊坡穩(wěn)定_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、土木建筑學院土木0302班學生邵明志外文翻譯第1頁共14頁邊坡穩(wěn)定重力和滲透力易引起天然邊坡、開挖形成的邊坡、堤防邊坡和土壩的不穩(wěn)定性。最重要的邊坡破壞的類型如圖9.1所示。在旋滑中,破壞面部分的形狀可能是圓弧或非圓弧線。總的來說,勻質(zhì)土為圓弧滑動破壞,而非勻質(zhì)土為非圓弧滑動破壞。平面滑動和復合滑動發(fā)生在那些強度差異明顯的相鄰地層的交界面處。平面滑動易發(fā)生在相鄰地層處于邊坡破壞面以下相對較淺深度的地方:破壞面多為平面,且與邊坡大致平行。復合滑動通常發(fā)生在相鄰地層處于深處的地段,破壞面由圓弧面和平面組成?;瑒舆吰聢D瓦1邊坡破壞類型在實踐中極限平衡法被用于邊坡穩(wěn)定分析當中。它假定破壞面是發(fā)生在沿著

2、一個假想或已知破壞面的點上的。土的有效抗剪強度與保持極限平衡狀態(tài)所要求的抗剪強度相比,就可以得到沿著破壞面上的平均安全系數(shù)。問題以二維考慮,即假想為平面應(yīng)變的情況。二維分析為三維(碟形)面解答提供了保守的結(jié)果。在這種分析方法中,應(yīng)用總應(yīng)力法,適用于完全飽和粘土在不條件排水下的情況。如建造完工的瞬間情況。這種分析中只考慮力矩平衡。此間,假定潛在破壞面為圓弧面。圖9.2展示了一個試驗性破壞面(圓心0,半徑r,長度La)。潛在的不穩(wěn)定性取決于破壞面以上土體的總重量(單位長度上的重量W。為了達到平衡,必須沿著破壞面?zhèn)鬟f的抗剪強度表小如下:其中F是就抗剪強度而言的安全系數(shù).關(guān)于0點力矩平衡:%"

3、;吟"濟南大學畢業(yè)設(shè)計用紙土木建筑學院土木0302班學生邵明志外文翻譯第2頁共14頁圖9.2mu情況的分析因此(9.1)Wd其它外力的力矩必須亦予以考慮。在張裂發(fā)展過程中,如圖9.2所示,如果裂隙中充滿水,弧長La會變短,超孔隙水壓力將垂直作用在裂隙上。有必要用一系列試驗性破壞面來對邊坡進行分析,從而確定最小的安全系數(shù)?;趲缀蜗嗨圃?,泰勒9.9發(fā)表了穩(wěn)定系數(shù),用于在總應(yīng)力方面對勻質(zhì)土邊坡進行分析。對于一個高度為H的邊坡,沿著安全系數(shù)最小的破壞面上的穩(wěn)定系數(shù)(Ns)為:(9.2)FyH對于uu=0的情況,Ns的值可以從圖9.3中得到。尺值取決于邊坡坡角B和高度系數(shù)D,其中DH是到穩(wěn)

4、固地層的深度。吉布森和摩根斯特恩9.3發(fā)表了不排水強度cu(uu=0)隨深度線性變化的正常固結(jié)粘土邊坡的穩(wěn)定系數(shù)。在這種方法中,潛在破壞面再次被假定為以O(shè)為圓心,以r為半徑的圓弧。試驗性破壞面(AQ以上的土體(ABCD,如圖9.5所示,被垂直劃分為一系列寬度為b的條塊。每個條塊的底邊假定為直線。對于任何一個條塊來說,其底邊與水平線的夾角為a,它的高,從中心線測量,為h。安全系數(shù)定義為有效抗剪強度(。與保持邊限平衡狀態(tài)的抗剪強度(pm)的比值,即:Fh%濟南大學畢業(yè)設(shè)計用紙土木建筑學院土木0302班學生邵明志外文翻譯第3頁共14頁圖9.5條分法每個條塊的安全系數(shù)取相同值,表明條塊之間必須互相支持

5、,即條塊間必須有力的作用。作用于條塊上的力(條塊每個單元維上法向力)如下:1 .條塊總重量,W=rbh(適當時用Tsat)2 .作用于底邊上總法向力,N(等于目)??傮w上,這個力有兩部分:有效法向力N'(等于-1)和邊界孔隙水壓力U(等于ul),其中u是底邊中心的孔隙水壓力,而l是底邊長度。3 .底邊上的剪力,T=Tmlo4 .側(cè)面上總法向力,E1和巳。5 .側(cè)面上總剪力,Xi和X2任何的外力也必須包含在分析之中。這是一種靜不定問題,為了得到解決,就必須對于條塊間作用力E和X作出假定:安全系數(shù)的最終解答是不準確的??紤]到圍繞O點的力矩,破壞弧AC上的剪力T的力矩總和,必須與土體ABCE

6、®量所產(chǎn)生的力矩相等。對于任何條塊,W的力臂為rsina,因此ETr=EWrsina則,對于有效應(yīng)力方面的分析:EWsins或者此+ian式卬(9.3)濟南大學畢業(yè)設(shè)計用紙土木建筑學院土木0302班學生邵明志外文翻譯第4頁共14頁其中La是弧AC的長度。公式9.3是準確的,但是當確定力N'時引入了近似。對于給定的破壞面,F(xiàn)的取值將決定于力N'的計算方法。在這種解法中,假定對于任何一個條塊,條間的相互作用力為零。解答包括了解出每個條塊垂直于底邊的作用力,即:N'=WCOS-ul因此,在有效應(yīng)力方面的安全系數(shù)(公式9.3),由下式計算:也+一皿)Ursina(9.

7、4)對于每個條塊,Wcosa和Wsina可以通過圖表法確定。a的取值可以通過測量或計算得到。同樣地,也必須選擇一系列試驗性的破壞面來獲得最小的安全系數(shù)。這種解法所得的安全系數(shù):與更精確的分析方法相比,其誤差通常為5-2%。應(yīng)用總應(yīng)力法分析時,使用參數(shù)Cu和uu,公式9.4中u取零。如果uu=0,那么安全系數(shù)為:(9.5)LIVsina因為N沒有出現(xiàn)在公式9.5中,故得到的安全系數(shù)F值是精確的在這種解法中,假定條塊側(cè)面的力是水平的,即:X-X2=0為了達到平衡,任何一個條塊底邊上的剪力為:7=/k"+N'tan解答垂直方向上的力:,c7N國N'cosa+ulcosa+T

8、sina+-tansini(9.6)Hf)很方便得到:l=bseca從公式9.3,通過一些重新整理,F(xiàn)=£rN仲+W-郵砌secatanatan(9.7)孔隙水壓力通過孔壓比,可以與任何點的與總“填充壓力”相聯(lián)系,定義為:(9.8)濟南大學畢業(yè)設(shè)計用紙土木建筑學院土木0302班學生邵明志外文翻譯第5頁共14頁(適當時用Ysat).對于任何條塊,U%"麗因此公式9.7可寫為:卜士麗占£加+呷一.樹湫:不即口工+超口時加巾一一一F(9.9)因為安全系數(shù)出現(xiàn)在公式9.9的兩邊,必須使用一系列近似,才能獲得解答,但收斂很快?;谟嬎愕闹貜托?,需要選擇充分數(shù)量的試驗性破壞面

9、。條分法特別適合于計算機解答。可以引入更復雜的邊坡幾何學和不同的土層。在大多數(shù)問題中,孔壓力比的取值ru在整個破壞面上是不一致的,但一旦存在獨立的高孔壓區(qū),通常在設(shè)計中采用平均值(單位面積上的荷重)。同樣的,這種方法確定的安全系數(shù)過低,但誤差不超過7%,多數(shù)情況下小于2%0斯班瑟9.8提出了一種分析方法,在此法中,條塊間的作用力是水平的,且滿足力和力矩平衡。斯班瑟得到了只滿足力矩平衡的畢肖普簡化解,其精確度取決于邊坡條塊間作用力力矩平衡的不敏感性。基于公式9.9的勻質(zhì)土邊坡的穩(wěn)定系數(shù),是由畢肖普和摩根斯特恩9.2發(fā)表的。由此可見,對于給定坡角和給定土性的邊坡,安全系數(shù)隨Tu線性變化,因此可以表

10、示為:F=m-Tu(9.10)一、一一一、一.一一.二-一'一-、一.其中m和n是穩(wěn)止系數(shù)。系數(shù)m和n是B,u,c'/丫及深度系數(shù)D的函數(shù)。假定潛在破壞面與邊坡面平行,所在深度與邊坡長度相比很小。那么,邊坡可以看作無限長,忽略端部效應(yīng)。邊坡與水平線成B角,破壞面深度為z如圖9.7中所示。水位線在破壞面以上高度mz(0<m<1)處,與邊坡平行。假定穩(wěn)定滲流發(fā)生在與邊坡平行的方向上。任何垂直條塊側(cè)面上白力是等值反向的,且破壞面上任意一點的應(yīng)力狀態(tài)是相同的.圖9.7平面層滑應(yīng)用有效應(yīng)力法,沿著破壞面上的土的抗剪強度為0=c'+(tr-u)tan0'安全系數(shù)

11、為:濟南大學畢業(yè)設(shè)計用紙土木建筑學院土木0302班學生邵明志外文翻譯第6頁共14頁b=1一m)y+西九職上cos'°T=(I-m)y+zsinflcos/?h=/nzywcos2flc'=0和m=0(即坡面與破壞面間的土接下來的特殊情況是需要引起注意的。如果是不完全飽和的),那么:(9.11)F=步'tanfl如果c'=0和m=1仰水位線與邊坡面一致),那么:(9.12)應(yīng)當注意的是,當c'=0時,安全系數(shù)是與深度無關(guān)的。如果c'大于零,那么安.一一,一、,一一、一一、'一'全系數(shù)就是z的函數(shù),如果z比規(guī)定值還小的話,B

12、可能會超過U。應(yīng)用總應(yīng)力分析法,需使用抗剪強度參數(shù)cu和Uu,而u取值為零。摩根斯特恩和普萊斯9.4提出了一般分析法,此法滿足所有的邊界條件和平衡條件,破壞面可以是任何形狀,圓弧,非圓弧或符合型。破壞面以上的土體被劃分為一系列垂直的平面,問題通過假定每部分之間垂直邊界上的作用力E和X的關(guān)系而轉(zhuǎn)化為靜定。這個假定的形式為X=f(x)E(9.13)其中f(x)是描述隨土體而變化的比值X/E的形式的任意函數(shù),而入是尺寸效應(yīng)系數(shù)。入的值是在解安全系數(shù)F時一同獲得的。在每個垂直邊界上能夠確定作用力E和X的值及作用點。對于任意的假定函數(shù)f(x),有必要仔細地檢查解答,以確定其在物理學上的合理性(即破壞面以

13、上土體中沒有剪切破壞或張力)。函數(shù)f(x)的選擇對于F的計算值的影響不能超過5%,通常假定f(x)=l。這種分析包含了人和F值相互作用的復雜過程,如摩根斯特恩和普萊斯9.5所描述的那樣,計算機的運用是必不可少的。貝爾9.1提出了一種滿足所有平衡情況,假定破壞面可能是任何形狀的分析方法。土體被劃分成一系列垂直的條塊,通過沿著破壞面上的法向作用力的假想分配,轉(zhuǎn)化為靜定問題。薩爾瑪9.6基于條分法發(fā)展了一種方法,在此法中,產(chǎn)生極限平衡所要求的臨界地震加速度是確定的。這種分析方法在分析中假定了條塊間垂直作用力的分配。同樣的,滿足所有的平衡條件,破壞面可以是任何形狀。靜安全系數(shù)是土的抗剪強度必須減小,以

14、致于臨界加速度為零時的系數(shù)。計算機的使用對于貝爾法和薩爾瑪法來說,是必不可少的。所有的解答必須要檢查,以確保它們在物理學上是可以接受的。濟南大學畢業(yè)設(shè)計用紙土木建筑學院土木0302班學生邵明志外文翻譯第7頁共14頁StabilityofSlopesbyGravitationalandseepageforcestendtocauseinstabilityinnaturalslopes,inslopesformedbyexcavationandintheslopesofembankmentsandearthdams.Themostimportanttypesofslopefailureareill

15、ustratedinFig.9.1.Inrotationalslipstheshapeofthefailuresurfaceinsectionmaybeacirculararcoranon-circularcurve.Ingeneral,circularslipsareassociatedwithhomogeneoussoilconditionsandnon-circularslipswithnon-homogeneousconditions.Translationalandcompoundslipsoccurwheretheformofthefailuresurfaceisinfluence

16、dthepresenceofanadjacentstratumofsignificantlydifferentstrengthTranslationalslipstendtooccurwheretheadjacentstratumisatarelativelyshallowdepthbelowthesurfaceoftheslope:thefailuresurfacetendstobeplaneandroughlyparalleltotheslope.Compoundslipsusuallyoccurwheretheadjacentstratumisatgreaterdepththefailu

17、resurfaceconsistingofcurvedandplanesection,sTyjmofSgefailureInpractice,limitingequilibriummethodsareusedintheanalysisofslopestability.Itisconsideredthatfailureisonthepointofoccurringalonganassumedoraknownfailuresurface.Theshearstrengthrequiredtomaintainaconditionoflimitingequilibriumiscomparedwithth

18、eavailableshearstrengthofthesoilgivingtheaveragefactorofsafetyalongthefailuresurface.Theproblemisconsideredintwodimensions,conditionsofplanestrainbeingassumedIthasbeenshownthatatwo-dimensionalanalysisgivesaconservativeresultforafailureonathree-dimensional(dish-shaped)surfaceThisanalysis,intermsoftot

19、alstress,coversthecaseofafullysaturatedclayunderundrainedconditions,i.e.Fortheconditionimmediatelyafterconstruction.OnlymomentequilibriumisconsideredintheanalysisInsection,thepotentialfailuresurfaceisassumedtobeacirculararc.Atrialfailuresurface(centreO,radiusrandlengthLa)isshowninFig.9.2.Potentialin

20、stabilityisduetothetotalweightofthesoilmass(WperunitLength)abovethefailuresurface.Forequilibriumtheshearstrengthwhichmustbemobilizedalongthefailuresurfaceisexpressedast=冊FFwhereFisthefactorofsafetywithrespecttoshearstrengthEquatingmomentsaboutO濟南大學畢業(yè)設(shè)計用紙土木建筑學院土木0302班學生邵明志外文翻譯第8頁共14頁Kg91Thee.二0idnnl&

21、gt;sis.ThereforeWdI-ig.7、1tiemeltiocEofslices(9.1)ThemomentsofanyadditionalforcesmustbetakenintoaccountIntheeventofatensioncrackdeveloping,asshowninFig.9.2,thearclengthLaisshortenedandahydrostaticforcewillactnormaltothecrackifthecrackIllswithwater.Itisnecessarytoanalyzetheslopeforanumberoftrialfailu

22、resurfacesinorderthattheminimumfactorofsafetycanbedeterminedBasedontheprincipleofgeometricsimilarity,Taylor9.9publishedstabilitycoefficientsfortheanalysisofhomogeneousslopesintermsoftotalstressForaslopeofheightHthestabilitycoefficient(Ns)forthefailuresurfacealongwhichthefactorofsafetyisaminimumis(9.

23、2)Forthecaseofu=0qvaluesofNscanbeobtainedfromFig.9.3.ThecoefficientNdependsontheslopeangle0andthedepthfacwhereDHisthedepthtoafirmstratum.GibsonandMorgenstern9.3publishedstabilitycoefficientsforslopesinnormallyconsolidatedclaysinwhichtheundrainedstrengthu(u=0)varieslinearlywithdepth.Inthismethodthepo

24、tentialfailuresurfaceinsection,isagainassumedtobeacirculararcwithcentreOandradiusr.Thesoilmass(ABCD)aboveatrialfailuresurface(AC)isdividedbyverticalplanesintoaseriesofslicesofwidthb,asshowninFig.9.5.ThebaseofeachsliceisassumedtobeastraightlineForanyslicetheinclinationofthebasetothehorizontalisheight

25、,measuredonthecentre-1ine,ish.Thefactorofsafetyisdefinedastheratiooftheavailableshearstrength(f)tortheshearstrength(m)iwhichmustbemobilizedtomaintainaconditionoflimitingequilibrium,i.e.濟南大學畢業(yè)設(shè)計用紙土木建筑學院土木0302班學生邵明志外文翻譯第9頁共14頁Thefactorofsafetyistakentobethesameforeachslice,implyingthattheremustbemutua

26、lsupportbetweenslicesi.e.forcesmustactbetweentheslicesTheforces(perunitdimensionnormaltothesection)actingonasliceare1 .Thetotalweightoftheslice,W=ybh(sat/whereappropriate)2 .ThetotalnormalforceonthebaseN(equalto.dil)generalthisforcehastwocomponents,theeffectivenormalforceN'(equaltoo-'l)andth

27、eboundarywaterforceU(equaltoul),whereuistheporewaterpressureatthecentreofthebaseandlisthelengthofthebase3 .TheshearforceonthebaseT=如14 .Thetotalnormalforcesonthesides,EandE2.5 .TheshearforcesonthesidesXiandX2.AnyexternalforcesmustalsobeincludedintheanalysisTheproblemisstaticallyindeterminateandinord

28、ertoobtainasolutionassumptionsmustbemaderegardingtheintersliceforcesEandXtheresultingsolutionforfactorofsafetyisnotexact.ConsideringmomentsaboutQthesumofthemomentsoftheshearforcesTonthefailurearcACmustequalthemomentoftheweightofthesoilmassABCDForanyslicetheleverarmofWisrsina,thereforeETr=EWrsinaNow,

29、T=r/=?IF=工亞血工.卬ForananalysisintermsofeffectivestressES+rftan修I二lIVsinaOrcLb+lan(9.3)SllsinxwhereLaisthearclengthAC.Equation9.3isexactbutapproximationsareintroducedindeterminingtheforcesN'.ForagivenfailurearcthevalueofFwilldependonthewayinwhichtheforcesN'areestimatedInthissolutionitisassumedt

30、hatforeachslicetheresultantoftheintersliceforcesiszeroThesolutioninvolvesresolvingtheforcesoneachslicenormaltothebasei.e.N'=WCOS-ulHencethefactorofsafetyintermsofeffectivestress(Equation9.3)isgivenbyIosinacrLf+tanWcos«-ui)foreach(9.4)ThecomponentsWCOSandWsinacanbedeterminedgraphically濟南大學畢業(yè)

31、設(shè)計用紙土木建筑學院土木0302班學生邵明志外文翻譯第10頁共14頁slice.Alternatively,thevalueofccanbemeasuredorcalciAgiain,aseriesoftrialfailuresurfacesmustbechoseninordertoobtaintheminimumfactorofsafety.Thissolutionunderestimatesthefactorofsafetytheerror,comparedwithmoreaccuratemethodsofanalysisisusuallywithintherange5-2%.Forana

32、nalysisintermsoftotalstresstheparametersCandnareusedandthevalueofuinEquation9.4iszero.Ifu=0,thefactorofsafetyisgivenby(9.5)AsN'doesnotappearinEquation9.5anexactvalueofFisobtainedInthissolutionitisassumedthattheresultantforcesonthesidesoftheslicesarehorizontal,i.e.Xl-X2=0Forequilibriumtheshearfor

33、ceonthebaseofanysliceis丁=/+卻'tan在)Resolvingforcesintheverticaldirection:力VN'c&si+ulcosi+sini+tani1疝aFF一卜=修一»機觸,正005!COSI+(9.6)'FfItisconvenienttosubstitutel=bsecaFromEquation9.3,aftersomerearrangemen,t琲加產(chǎn):+吧吧(9.7)Theporewaterpressurecanberelatedtothetotal'f川pressure'atan

34、ypointbymeansofthedimensionlessporepressureratjodefinedas(9.8)u調(diào)(satwhereappropriate).Foranyslice,ur-,"W/bHenceEquation9.7canbewritten:F(9.9)濟南大學畢業(yè)設(shè)計用紙土木建筑學院土木0302班學生邵明志外文翻譯第11頁共14頁AsthefactorofsafetyoccursonbothsidesofEquation9.9,aprocessofsuccessiveapproximationmustbeusedtoobtainasolutionbutc

35、onvergenceisrapidDuetotherepetitivenatureofthecalculationsandtheneedtoselectanadequatenumberoftrialfailuresurfaces,themethodofslicesisparticularlysuitableforsolutionbycomputerMorecomplexslopegeometryanddifferentsoilstratacanbeintroducedInmostproblemsthevalueoftheporepressureratioruisnotconstantovert

36、hewholefailuresurfacebut,unlessthereareisolatedregionsofhighporepressure,anaveragevalue(weightedonanareabasis)isnormallyusedindesign.Again,thefactorofsafetydeterminedbythismethodisanunderestimatebuttheerrorisunlikelytoexceed%andinmostcasesislessthan2.Spencer9.8proposedamethodofanalysisinwhichtheresu

37、ltantIntersliceforcesareparallelandinwhichbothforceandmomentequilibriumaresatisfiedSpencershowedthattheaccuracyoftheBishopsimplifiedmethod,inwhichonlymomentequilibriumissatisfied,isduetotheinsensitivityofthemomentequationtotheslopeoftheintersliceforcesDimensionlessstabilitycoefficientsforhomogeneous

38、slopesbasedonEquation9.9havebeenpublishedbyBishopandMorgenstern9.2.ItcanbeshownthatforagivenslopeangleandgivensoilpropertiesthefactorofsafetyvarieslinearlywithuandcanthusbeexpressedasF=m-nu(9.10)where,mandnarethestabilitycoefficients.Thecoefficients,mandnarefunctionsofpthedimensionlessnumberc'/丫

39、andthedepthfactorD.UsingtheFelleniusmethodofslices,determinethefactorofsafety,intermsofeffectivestress,oftheslopeshowninFig.9.6forthegivenfailuresurfaceTheunitweightofthesoil,bothaboveandbelowthewatertableis20kN/mandtherelevantshearstrengthparametersarec'=10kN/mndu=29°.Thefactorofsafetyisgi

40、venbyEquation9.4.Thesoilmassisdividedintoslicesl.5mwide.Theweight(W)ofeachsliceisgivenbyW=Tbh=20X51油=30hkN/mTheheighthforeachsliceissetoffbelowthecentreofthebaseandthenormalandtangentialcomponentshcosaandhsinarespectivelyaredeterminedgraphicaa?showninFig.9.6.ThenWcosa=30hcosaWsina=30hsinaTheporewate

41、rpressureatthecentreofthebaseofeachsliceistakentob碰zw,wherezw丫istheverticaldistanceofthecentrepointbelowthewatertable(asshowninfigure).Thisprocedureslightlyoverestimatestheporewaterpressurewhichstrictlyshouldbe/ze,wherezeistheverticaldistancebelowthepointofintersectionofthewatertableandtheequipotent

42、ialthroughthecentreoftheslicebaseTheerrorinvolvedisonthesafesideThearclength(La)iscalculatedas14.35mmTheresultsaregiveninTable9.1EWcosa=30X17.50=525kNmEWsina=30X8.45=254kmE(wcos-M)=525132=393kN/m濟南大學畢業(yè)設(shè)計用紙土木建筑學院土木0302班學生邵明志外文翻譯第12頁共14頁*。工“+tan力'E(Wc口sotu/)EWsinot(tOx1435)+(0554x393)2541435+218,小

43、昨9看Table9.!SluxhCOSQhsinjiuino1叫IkNm2向卜ikNym)1075-0155-91-55912180-010b5U177327004016215525»432Srdo1*11605)45b75J711702916MO2-35心19522071902250255O80550-95024501750H451435Itisassumedthatthepotentialfailuresurfaceisparalleltothesurfaceoftheslopeandisatadepththatissmallcomparedwiththelengthofthes

44、lope.Theslopecanthenbeconsideredasbeingofinfinitelength,withendeffectsbeingignored.Theslopeisinclinedatangle0tothehorizontalandthedepthofthefailureplaneisz.asshowninsectioninFig.97Thewatertableistakentobeparalleltotheslopeataheightofmz(0<m<1)abovethefailureplane.Steadyseepageisassumedtobetakin

45、gplaceinadirectionparalleltothesloperheforcesonthesidesofanyverticalsliceareequalandoppositeandthestressconditionsarethesameateverypointonthefailureplane.濟南大學畢業(yè)設(shè)計用紙土木建筑學院土木0302班學生邵明志外文翻譯第13頁共14頁J-ifL胃FLinccrrivlaliniLil<lipIntermsofeffectivestress,theshearstrengthofthesoilalongthefailureplaneisu)

46、tanandthefactorofsafetyisF=%Theexpressionsforo-,rand仙are:仃=(1-tn)y+用%J28s2#T=(1-帥+IM、)工品8u=cos7/?ThefollowingspecialcasesareofinterestIfc'=0andm=0(i.e.thesobetweenthesurfaceandthefailureplaneisnotfullysaturated),thenJF"'=tan“tanfl(9.11)IfclanfiBmayex=0andm=1(i.e.thewatertablecoincideswi

47、ththesurfaceofthesopeen:(9.12)Itshouldbenotedthatwhenc'=0thefactorofsafetyisindependentofthedepthz.Ifcisgreaterthanzetbefactorofsafetyisafunctionofz,andprovidedzislessthanacriticalvalueForatotalstressanalysistheshearstrengthparametersonduareusedwithazerovalueofu.MorgensternandPrice9.4developedag

48、eneralanalysisinwhichallboundaryandequilibriumconditionsaresatisfiedandinwhichthefailuresurfacemaybeanyshapecircular,non-circularorcompound.ThesoilmassabovethefailureplaneisdividedintosectionsbyanumberofverticalplanesandtheproblemisrenderedstaticallydeterminatebyassumingarelationshipbetweentheforcesEandXontheverticalboundariesbetweeneachsectio

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論