數(shù)字地形處測(cè)量學(xué)學(xué)習(xí)教案_第1頁(yè)
數(shù)字地形處測(cè)量學(xué)學(xué)習(xí)教案_第2頁(yè)
數(shù)字地形處測(cè)量學(xué)學(xué)習(xí)教案_第3頁(yè)
數(shù)字地形處測(cè)量學(xué)學(xué)習(xí)教案_第4頁(yè)
數(shù)字地形處測(cè)量學(xué)學(xué)習(xí)教案_第5頁(yè)
已閱讀5頁(yè),還剩24頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、數(shù)字?jǐn)?shù)字(shz)地形處測(cè)量學(xué)地形處測(cè)量學(xué)第一頁(yè),共29頁(yè)。第1頁(yè)/共29頁(yè)第二頁(yè),共29頁(yè)。第2頁(yè)/共29頁(yè)第三頁(yè),共29頁(yè)。測(cè)量上一般要求: D往- D返/D0 系統(tǒng)誤差二、誤差二、誤差(wch)的種類(lèi)的種類(lèi)即當(dāng)直線距離超過(guò)即當(dāng)直線距離超過(guò)(chogu)(chogu)一個(gè)尺段時(shí),需進(jìn)行一個(gè)尺段時(shí),需進(jìn)行直線定線直線定線. .ABLAB第12頁(yè)/共29頁(yè)第十三頁(yè),共29頁(yè)。 測(cè)量誤差根據(jù)其性質(zhì)不同,可分為系統(tǒng)誤差、偶然誤差、粗差。1.系統(tǒng)誤差:在相同觀測(cè)條件下,對(duì)某一觀測(cè)量進(jìn)行多次觀測(cè),若各觀測(cè)誤差在大小、符號(hào)上表現(xiàn)出系統(tǒng)性,或者具有一定(ydng)的規(guī)律性,或?yàn)橐怀?shù),這種誤差就稱(chēng)為系統(tǒng)誤

2、差。例如:3)、水準(zhǔn)儀I角對(duì)測(cè)量高差的影響 二、誤差二、誤差(wch)的種類(lèi)的種類(lèi)第13頁(yè)/共29頁(yè)第十四頁(yè),共29頁(yè)。iABSASBBAABSSibah)1(1水準(zhǔn)(shuzhn)管軸視準(zhǔn)軸b1bi水準(zhǔn)儀水準(zhǔn)儀I角對(duì)測(cè)量角對(duì)測(cè)量(cling)高差的影響高差的影響-系系統(tǒng)誤差統(tǒng)誤差SA=SB時(shí),hAB=0aa1 總結(jié):系統(tǒng)誤差具有積累性,可以利用其規(guī)律性對(duì)觀測(cè)值進(jìn)行(jnxng)改正或者采用一定的測(cè)量方法加以抵消或消弱.第14頁(yè)/共29頁(yè)第十五頁(yè),共29頁(yè)。 測(cè)量誤差根據(jù)其性質(zhì)不同,可分為系統(tǒng)誤差、偶然誤差、粗差。2.偶然誤差: 在相同(xin tn)觀測(cè)條件下,對(duì)一觀測(cè)量進(jìn)行多次觀測(cè),若各觀

3、測(cè)誤差在大小和符號(hào)上表現(xiàn)出偶然性,即單個(gè)誤差而言,該誤差的大小和符號(hào)沒(méi)有規(guī)律性,但就大量的誤差而言,具有一定的統(tǒng)計(jì)規(guī)律,這種誤差就稱(chēng)為偶然誤差。例如: 1)、距離測(cè)量二、誤差二、誤差(wch)的種類(lèi)的種類(lèi)010D9.59.4 9.7 9.5 9.6 9.3 9.2 9.6 0.1 -0.2 0 -0.1 0.2 0.3 -0.1 1 2 3 4 5 6 7 N No o第15頁(yè)/共29頁(yè)第十六頁(yè),共29頁(yè)。1.71.61.5 1591中絲讀數(shù)(dsh): 1592 1593例如例如(lr): 2)、)、 讀數(shù)讀數(shù)誤差誤差(水準(zhǔn)測(cè)量水準(zhǔn)測(cè)量)第16頁(yè)/共29頁(yè)第十七頁(yè),共29頁(yè)。 總結(jié)總結(jié): 偶

4、然誤差不可避免,通過(guò)多余觀測(cè),利用偶然誤差不可避免,通過(guò)多余觀測(cè),利用(lyng)數(shù)理統(tǒng)計(jì)理論處理,可以求得參數(shù)的最佳估值數(shù)理統(tǒng)計(jì)理論處理,可以求得參數(shù)的最佳估值.例如例如(lr): 3)、)、 照準(zhǔn)誤差照準(zhǔn)誤差例如例如(lr): 4)、)、 整平誤差整平誤差第17頁(yè)/共29頁(yè)第十八頁(yè),共29頁(yè)。 測(cè)量誤差根據(jù)其性質(zhì)不同,可分為系統(tǒng)誤差、偶然誤差、粗差。3.粗差(錯(cuò)誤):由于觀測(cè)條件的不好,使得觀測(cè)值中含有的誤差較大或超過(guò)了規(guī)定的數(shù)值,這種誤差就稱(chēng)為粗差。 例如(lr):已知點(diǎn)有誤,往返高差相差懸殊。二、誤差二、誤差(wch)的種類(lèi)的種類(lèi) 通常,測(cè)量通常,測(cè)量(cling)中需要進(jìn)行多余觀測(cè)。

5、應(yīng)當(dāng)剔除觀測(cè)值中中需要進(jìn)行多余觀測(cè)。應(yīng)當(dāng)剔除觀測(cè)值中的粗差,利用系統(tǒng)誤差的規(guī)律性將系統(tǒng)誤差消除或減弱到可以忽略不的粗差,利用系統(tǒng)誤差的規(guī)律性將系統(tǒng)誤差消除或減弱到可以忽略不計(jì),使觀測(cè)值主要含有偶然誤差,從而利用數(shù)理統(tǒng)計(jì)方法求得觀測(cè)值計(jì),使觀測(cè)值主要含有偶然誤差,從而利用數(shù)理統(tǒng)計(jì)方法求得觀測(cè)值的最可靠值。的最可靠值。 總結(jié):總結(jié):在測(cè)量工作中,一般需要進(jìn)行多余觀測(cè),發(fā)現(xiàn)粗在測(cè)量工作中,一般需要進(jìn)行多余觀測(cè),發(fā)現(xiàn)粗差,將其剔除或重測(cè)。差,將其剔除或重測(cè)。第18頁(yè)/共29頁(yè)第十九頁(yè),共29頁(yè)。 通過(guò)對(duì)大量的實(shí)驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析后,特別是當(dāng)觀測(cè)次數(shù)足夠多時(shí),可以得出偶然誤差具有以下的規(guī)律性:1、在一定

6、的觀測(cè)條件下,偶然誤差的絕對(duì)值不會(huì)(b hu)超過(guò)一定的限值- 超限數(shù)為零;有限性2、絕對(duì)值較小的偶然誤差比絕對(duì)值大的出現(xiàn)的可能性要大 -小誤差大概率:集中性 3、絕對(duì)值相等的正負(fù)偶然誤差出現(xiàn)的可能性相等 -正負(fù)相等;對(duì)稱(chēng)性 4、當(dāng)觀測(cè)次數(shù)無(wú)窮增多時(shí),偶然誤差的 算術(shù)平均值為零 -平均理論 。抵償性三、偶然誤差的特性三、偶然誤差的特性(txng)lim0nn niin121其中其中第19頁(yè)/共29頁(yè)第二十頁(yè),共29頁(yè)?!纠吭谙嗤挠^測(cè)條件【例】在相同的觀測(cè)條件(tiojin)(tiojin)下,觀測(cè)了下,觀測(cè)了217217個(gè)三角形的全部?jī)?nèi)角。個(gè)三角形的全部?jī)?nèi)角。n三角形內(nèi)角三角形內(nèi)角(ni

7、jio)(ni jio)和真誤差和真誤差: : A A+B+B+C+C-180-180n i=1,2,3 .217 i=1,2,3 .217 第20頁(yè)/共29頁(yè)第二十一頁(yè),共29頁(yè)。 - 27-24-21-18-15-12 -9 -6 -3 0 3 6 9 12 15 18 21 24 27(vi/n) 22221ef21(vi/n)/3每一誤差區(qū)間上方的長(zhǎng)方形面積每一誤差區(qū)間上方的長(zhǎng)方形面積(min j),代表誤差出現(xiàn)在該區(qū)間的相對(duì)個(gè)數(shù),代表誤差出現(xiàn)在該區(qū)間的相對(duì)個(gè)數(shù)直方圖誤差(wch)分布曲線第21頁(yè)/共29頁(yè)第二十二頁(yè),共29頁(yè)。正態(tài)分布曲線(qxin)的特性:1、 是偶函數(shù)。 這就是(

8、jish)偶然誤差的第三特性。對(duì)稱(chēng)性)()(ff2、 愈小, 愈大。 有最大值 )(f當(dāng)當(dāng)=0=0時(shí)時(shí)0)(f時(shí),當(dāng)橫軸是曲線(qxin)的漸近線,這就是偶然誤差的第一、二特性)(f)(f 拐曲線有兩個(gè)拐點(diǎn),橫坐標(biāo)為:當(dāng) 愈小時(shí),曲線愈陡峭,誤差分布比較集中當(dāng) 愈大時(shí),曲線愈平緩,誤差分布比較分散12 第22頁(yè)/共29頁(yè)第二十三頁(yè),共29頁(yè)。 22221 ef n22lim 參數(shù) 的大小反映了一組觀測(cè)值誤差(wch)分布的密集和離散程度。 n稱(chēng)為方差2 稱(chēng)為標(biāo)準(zhǔn)差(方根差或均方根差)四、衡量精度四、衡量精度(jn d)的指標(biāo)的指標(biāo)精度指的是一組觀測(cè)值誤差分布精度指的是一組觀測(cè)值誤差分布(fnb

9、)的密集或分散的程度。的密集或分散的程度。1、標(biāo)準(zhǔn)差和中誤差、標(biāo)準(zhǔn)差和中誤差1)標(biāo)準(zhǔn)差標(biāo)準(zhǔn)差第23頁(yè)/共29頁(yè)第二十四頁(yè),共29頁(yè)。四、衡量四、衡量(hng ling)精度的指標(biāo)精度的指標(biāo)2)、中誤差)、中誤差(wch): 標(biāo)準(zhǔn)差的一個(gè)估值。標(biāo)準(zhǔn)差的一個(gè)估值。 在相同(xin tn)觀測(cè)條件下進(jìn)行一組觀測(cè),得出的每個(gè)觀測(cè)值都稱(chēng)為同精度的觀測(cè)值。即每個(gè)觀測(cè)值的真差不同,但中誤差是相同(xin tn)的。 例:例:2002級(jí)的某班的級(jí)的某班的3個(gè)小組,在相同觀測(cè)條件下進(jìn)行四個(gè)小組,在相同觀測(cè)條件下進(jìn)行四等水準(zhǔn)測(cè)量。第等水準(zhǔn)測(cè)量。第1個(gè)小組測(cè)得閉合差為個(gè)小組測(cè)得閉合差為+2mm,第第2個(gè)小組測(cè)得閉個(gè)

10、小組測(cè)得閉合差為合差為-6mm,第三個(gè)小組測(cè)得閉合差為第三個(gè)小組測(cè)得閉合差為0。試判斷哪一組觀測(cè)。試判斷哪一組觀測(cè)精度高?精度高?精度相同22212nnnm L第24頁(yè)/共29頁(yè)第二十五頁(yè),共29頁(yè)。 小,精度高小,精度高 大,精度低大,精度低()f2m2m1m2m1m2m觀測(cè)條觀測(cè)條件件誤差分布誤差分布觀測(cè)值精度觀測(cè)值精度四、衡量精度四、衡量精度(jn d)的指標(biāo)的指標(biāo) nm 中誤差中誤差(wch)第25頁(yè)/共29頁(yè)第二十六頁(yè),共29頁(yè)。四、衡量四、衡量(hng ling)精度的指標(biāo)精度的指標(biāo)2、容許、容許(rngx)誤差(限差)誤差(限差)通常取標(biāo)準(zhǔn)差的兩倍(或三倍)作為觀測(cè)值的容許誤差。實(shí)際(shj)中常用中誤差代替標(biāo)準(zhǔn)差。即 即大于2倍中誤差的真誤差,出現(xiàn)的可能性為5%即大于3倍中誤差的真誤差,出現(xiàn)的可能性為0.3%2221()0.6832Pfded 955.021)(222222222dedfP997.021)(333323322dedfP2mV允第26頁(yè)/共29頁(yè)第二十七頁(yè),共29頁(yè)。四、衡量精度四、衡量精度(jn d)的指標(biāo)的指標(biāo)精度(jn d)不相同3、相對(duì)誤差、相對(duì)誤差(xin du w ch)通常是用來(lái)衡量和距離有關(guān)的觀測(cè)量的精度的好壞。通常是用來(lái)衡量和距離有關(guān)的觀測(cè)量的精度的好壞。KSmKsSs11 例例:測(cè)量?jī)蓷l直線,一條測(cè)量?jī)蓷l直線,一條100

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論