![初中數(shù)學知識點 (2)_第1頁](http://file3.renrendoc.com/fileroot_temp3/2022-5/15/b27042db-7d5f-4d31-ae18-b64cb5e6b58b/b27042db-7d5f-4d31-ae18-b64cb5e6b58b1.gif)
![初中數(shù)學知識點 (2)_第2頁](http://file3.renrendoc.com/fileroot_temp3/2022-5/15/b27042db-7d5f-4d31-ae18-b64cb5e6b58b/b27042db-7d5f-4d31-ae18-b64cb5e6b58b2.gif)
![初中數(shù)學知識點 (2)_第3頁](http://file3.renrendoc.com/fileroot_temp3/2022-5/15/b27042db-7d5f-4d31-ae18-b64cb5e6b58b/b27042db-7d5f-4d31-ae18-b64cb5e6b58b3.gif)
下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、初中數(shù)學知識點歸納口訣有理數(shù)的加法運算:同號相加一邊倒;異號相加“大”減“小”,符號跟著大的跑;絕對值相等“零”正好?!咀ⅰ俊按蟆睖p“小”是指絕對值的大小。合并同類項:合并同類項,法則不能忘。只求系數(shù)和,字母、指數(shù)不變樣。去、添括號法則:去括號、添括號,關鍵看符號。括號前面是正號,去、添括號不變號;括號前面是負號,去、添括號都變號。一元一次方程: 已知未知要分離,分離方法就是移。加減移項要變號,乘除移了要顛倒。恒等變換:兩個數(shù)字來相減,互換位置最常見。正負只看其指數(shù),奇數(shù)變號偶不變?!咀ⅰ浚╝-b)2n+1 =-(b - a)2n+1(a-b)2n=(b - a)2n平方差公式: 平方差公式有
2、兩項,符號相反切記牢。首加尾乘首減尾,莫與完全公式相混淆。完全平方: 完全平方有三項,首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;首尾括號帶平方,尾項符號隨中央。因式分解:一提(公因式)二套(公式)三分組,細看幾項不離譜。兩項只用平方差;三項十字相乘法,陣法熟練不馬虎;四項仔細看清楚,若有三個平方數(shù)(項),就用一三來分組,否則二二去分組;五項、六項更多項,二三、三三試分組;以上若都行不通,拆項、添項看清楚?!按搿笨跊Q:挖去字母換上數(shù)(式),數(shù)字、字母都保留;換上分數(shù)或負數(shù),給它帶上小括弧,原括弧內(nèi)出(現(xiàn))括弧,逐級向下變括?。ㄐ≈写螅雾検竭\算:加、減,乘、除,乘、開方,三級運算分得清
3、。系數(shù)進行同級(運)算,指數(shù)運算降級(進)行。一元一次不等式解題的一般步驟:去分母、去括號,移項時候要變號; 同類項、合并好,再把系數(shù)來除掉;兩邊除(以)負數(shù)時,不等號改向別忘了。一元一次不等式組的解集:大大取較大,小小取較?。恍〈?,大小取中間;大小,小大無處找。一元二次不等式、一元一次絕對值不等式的解集:大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。分式混合運算法則:分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;變號必須兩處,結果要求最簡。分式方程的解法步驟:同
4、乘最簡公分母,化成整式寫清楚,求得解后須驗根,原(根)留、增(根)舍別含糊。 最簡根式的條件:最簡根式三條件,號內(nèi)不把分母含,冪指(數(shù))根指(數(shù))要互質(zhì),冪指比根指小一點。特殊點坐標特征: 坐標平面點(x,y),橫在前來縱在后;(+,+),(-,+),(-,-)和(+,-),四個象限分前后;X軸上y為0,x為0在Y軸。象限角的平分線: 象限角的平分線,坐標特征有特點,一、三橫縱都相等,二、四橫縱卻相反。平行某軸的直線: 平行某軸的直線,點的坐標有講究,直線平行X軸,縱坐標相等橫不同; 直線平行于Y軸,點的橫坐標仍照舊。對稱點坐標:對稱點坐標要記牢,相反數(shù)位置莫混淆,X軸對稱y相反, Y軸對稱,
5、x前面添負號; 原點對稱最好記,橫縱坐標變符號。自變量的取值范圍:分式分母不為零,偶次根下負不行;零次冪底數(shù)不為零,整式、奇次根全能行。函數(shù)圖像的移動規(guī)律: 若把一次函數(shù)解析式寫成y=k(x+0)+b,二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣:“左右平移在括號,上下平移在末稍, 左正右負須牢記,上正下負錯不了”。一次函數(shù)圖像與性質(zhì)口訣:一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見, k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠。 二次函數(shù)
6、圖像與性質(zhì)口訣: 二次函數(shù)拋物線,圖象對稱是關鍵;開口、頂點和交點,它們確定圖象限;開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關聯(lián);頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標最重要,一般式配方它就現(xiàn),橫標即為對稱軸,縱標函數(shù)最值見。若求對稱軸位置, 符號反,一般、頂點、交點式,不同表達能互換。反比例函數(shù)圖像與性質(zhì)口訣:反比例函數(shù)有特點,雙曲線相背離的遠; k為正,圖在一、三(象)限;k為負,圖在二、四(象)限;圖在一、三函數(shù)減,兩個分支分別減;圖在二、四正相反,兩個分支分別添;線越長越近軸,永遠與軸不沾邊。巧記三角函數(shù)定義:初中所學的三角函數(shù)有正
7、弦、余弦、正切、余切,它們實際是三角形邊的比值,可以把兩個字用隔開,再用下面的一句話記定義: 一位不高明的廚子教徒弟殺魚,說了這么一句話: 正對魚磷(余鄰)直刀切。正:正弦或正切,對:對邊即正是對;余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。三角函數(shù)的增減性:正增余減特殊三角函數(shù)值記憶: 分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”。平行四邊形的判定:要證平行四邊形,兩個條件才能行。一證對邊都相等;或證對邊都平行;一組對邊也可以,必須相等且平行。對角線,是個寶,互相平分“跑不了”;對
8、角相等也有用,“兩組對角”才能成。梯形問題的輔助線: 移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在“”現(xiàn);延長兩腰交一點,“”中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。添加輔助線歌:輔助線,怎么添?找出規(guī)律是關鍵。題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形邊兩中點,連接則成中位線;三角形中有中線,延長中線翻一番。圓的證明歌:圓的證明不算難,常把半徑直徑連; 有弦可作弦心距,它定垂直平分弦;直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關角,勿忘相互有關聯(lián), 圓周、圓心、弦切角,細找關系
9、把線連。同弧圓周角相等,證題用它最多見, 圓中若有弦切角,夾弧找到就好辦;圓有內(nèi)接四邊形,對角互補記心間,外角等于內(nèi)對角,四邊形定內(nèi)接圓;直角相對或共弦,試試加個輔助圓; 若是證題打轉(zhuǎn)轉(zhuǎn),四點共圓可解難;要想證明圓切線,垂直半徑過外端,直線與圓有共點,證垂直來半徑連,直線與圓未給點,需證半徑作垂線;四邊形有內(nèi)切圓,對邊和等是條件;如果遇到圓與圓,弄清位置很關鍵,兩圓相切作公切,兩圓相交連公弦。圓中比例線段: 遇等積,改等比,橫找豎找定相似;不相似,別生氣,等線等比來代替,遇等比,改等積,引用射影和圓冪,平行線,轉(zhuǎn)比例,兩端各自找聯(lián)系。正多邊形訣竅歌: 份相等分割圓,n值必須大于三, 依次連接各分點,內(nèi)接正n邊形在眼前。經(jīng)過分點做切線,切線相交n個點,n個交點做頂點,外切正n邊形便出現(xiàn)。正n邊形很美觀,它有內(nèi)接,外切圓,內(nèi)接、外切都唯一,兩圓還是同心圓,它的圖形軸對稱,n條對稱軸都過圓心點;如果n值為偶數(shù),中心對稱很方便;正n邊形做計算,邊心距、半徑是關鍵,內(nèi)切、外接圓半徑,邊心距、半徑分別換,分成直角三角形2n個整,依此計算便簡單。函數(shù)學習口決:正比例函數(shù)是直線,圖象一定過原點,k的正負是關鍵,決定直線的象限,負k經(jīng)過二四限,x增大y在減,上下平移k不變,由引得到一次線,向上加b向下減,圖象經(jīng)過三個限,兩點決定一條線,選定系數(shù)是關鍵;反比例函
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度中式烤鴨技藝傳承學員收費合作合同
- 2025年度花卉苗木種植與旅游觀光融合合同
- 2025年度教育培訓行業(yè)數(shù)字化轉(zhuǎn)型咨詢與服務合同協(xié)議
- 2025年度智能機器人制造合作合同范本
- 2025年度人工智能教育與人才培養(yǎng)股權分配合同范本
- 2025年度職業(yè)培訓基地共建與運營管理合同書
- 生態(tài)農(nóng)業(yè)與環(huán)境保護教育普及
- 2025年度腳手架工程安全監(jiān)督及驗收合同
- 電力市場教育課程如何把握投資機會
- 2025年度國際技術合同合同簽訂與審查
- 真需求-打開商業(yè)世界的萬能鑰匙
- 2024年濰坊護理職業(yè)學院高職單招(英語/數(shù)學/語文)筆試歷年參考題庫含答案解析
- 費曼學習法費曼學習法
- 銀行授信盡職調(diào)查課件
- 河北省縣市鄉(xiāng)鎮(zhèn)衛(wèi)生院社區(qū)衛(wèi)生服務中心基本公共衛(wèi)生服務醫(yī)療機構名單目錄地址2415家
- (完整版)漢密爾頓焦慮量表(HAMA)
- 編外人員錄用審批表
- 地基轉(zhuǎn)讓合同范文
- 倪海廈《天紀》講義
- 員工住宿人身財產(chǎn)安全的承諾書范文
- 應用寫作第一章概述講義
評論
0/150
提交評論