版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知數(shù)列滿足,且,則的值是( )ABC4D2已知函數(shù)滿足,當(dāng)時(shí),則( )A或B或C或D或3已知,則( )ABCD4趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為周髀算經(jīng)一書作序時(shí),介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦
2、為邊長(zhǎng)得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的).類比“趙爽弦圖”.可類似地構(gòu)造如下圖所示的圖形,它是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成一個(gè)大等邊三角形.設(shè),若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形(陰影部分)的概率是( )ABCD5已知函數(shù)的圖像的一條對(duì)稱軸為直線,且,則的最小值為( )AB0CD6函數(shù) 的部分圖象如圖所示,則 ( )A6B5C4D37若、滿足約束條件,則的最大值為( )ABCD8已知數(shù)列滿足,則( )ABCD9某個(gè)小區(qū)住戶共200戶,為調(diào)查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶進(jìn)行調(diào)查,得到本月的用水量(單位:
3、m3)的頻率分布直方圖如圖所示,則小區(qū)內(nèi)用水量超過(guò)15 m3的住戶的戶數(shù)為( )A10B50C60D14010若復(fù)數(shù)z滿足,則( )ABCD11設(shè)雙曲線(a0,b0)的一個(gè)焦點(diǎn)為F(c,0)(c0),且離心率等于,若該雙曲線的一條漸近線被圓x2+y22cx0截得的弦長(zhǎng)為2,則該雙曲線的標(biāo)準(zhǔn)方程為( )ABCD12已知橢圓的右焦點(diǎn)為F,左頂點(diǎn)為A,點(diǎn)P橢圓上,且,若,則橢圓的離心率為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知,是平面向量,是單位向量.若,且,則的取值范圍是_.14二項(xiàng)式的展開(kāi)式中項(xiàng)的系數(shù)為_(kāi)15如圖是一個(gè)算法偽代碼,則輸出的的值為_(kāi).16設(shè)Sn為數(shù)列a
4、n的前n項(xiàng)和,若an0,a1=1,且2Sn=an(an+t),nN*,則S10=_.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)如圖,在三棱柱中,、分別是、的中點(diǎn).(1)證明:平面;(2)若底面是正三角形,在底面的投影為,求到平面的距離.18(12分)已知橢圓()的半焦距為,原點(diǎn)到經(jīng)過(guò)兩點(diǎn),的直線的距離為()求橢圓的離心率;()如圖,是圓的一條直徑,若橢圓經(jīng)過(guò),兩點(diǎn),求橢圓的方程19(12分)在平面直角坐標(biāo)系中,設(shè),過(guò)點(diǎn)的直線與圓相切,且與拋物線相交于兩點(diǎn)(1)當(dāng)在區(qū)間上變動(dòng)時(shí),求中點(diǎn)的軌跡;(2)設(shè)拋物線焦點(diǎn)為,求的周長(zhǎng)(用表示),并寫出時(shí)該周長(zhǎng)的具體取值20
5、(12分)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,且兩坐標(biāo)系取相同的長(zhǎng)度單位.已知曲線的參數(shù)方程:(為參數(shù)),直線的極坐標(biāo)方程:(1)求曲線的極坐標(biāo)方程;(2)若直線與曲線交于、兩點(diǎn),求的最大值.21(12分)已知的內(nèi)角、的對(duì)邊分別為、,滿足.有三個(gè)條件:;.其中三個(gè)條件中僅有兩個(gè)正確,請(qǐng)選出正確的條件完成下面兩個(gè)問(wèn)題:(1)求;(2)設(shè)為邊上一點(diǎn),且,求的面積.22(10分)已知函數(shù)(1)求函數(shù)在處的切線方程(2)設(shè)函數(shù),對(duì)于任意,恒成立,求的取值范圍.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1B【解析】 由,可得,
6、所以數(shù)列是公比為的等比數(shù)列, 所以,則, 則,故選B.點(diǎn)睛:本題考查了等比數(shù)列的概念,等比數(shù)列的通項(xiàng)公式及等比數(shù)列的性質(zhì)的應(yīng)用,試題有一定的技巧,屬于中檔試題,解決這類問(wèn)題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運(yùn)用,尤其需要注意的是,等比數(shù)列的性質(zhì)和在使用等比數(shù)列的前n項(xiàng)和公式時(shí),應(yīng)該要分類討論,有時(shí)還應(yīng)善于運(yùn)用整體代換思想簡(jiǎn)化運(yùn)算過(guò)程.2C【解析】簡(jiǎn)單判斷可知函數(shù)關(guān)于對(duì)稱,然后根據(jù)函數(shù)的單調(diào)性,并計(jì)算,結(jié)合對(duì)稱性,可得結(jié)果.【詳解】由,可知函數(shù)關(guān)于對(duì)稱當(dāng)時(shí),可知在單調(diào)遞增則又函數(shù)關(guān)于對(duì)稱,所以且在單調(diào)遞減,所以或,故或所以或故選:C【點(diǎn)睛】本題考查函數(shù)的對(duì)稱性以及單調(diào)性求解不等式,抽象
7、函數(shù)給出式子的意義,比如:,考驗(yàn)分析能力,屬中檔題.3D【解析】分別解出集合然后求并集.【詳解】解:, 故選:D【點(diǎn)睛】考查集合的并集運(yùn)算,基礎(chǔ)題.4A【解析】根據(jù)幾何概率計(jì)算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可【詳解】在中,由余弦定理,得,所以.所以所求概率為.故選A.【點(diǎn)睛】本題考查了幾何概型的概率計(jì)算問(wèn)題,是基礎(chǔ)題5D【解析】運(yùn)用輔助角公式,化簡(jiǎn)函數(shù)的解析式,由對(duì)稱軸的方程,求得的值,得出函數(shù)的解析式,集合正弦函數(shù)的最值,即可求解,得到答案.【詳解】由題意,函數(shù)為輔助角,由于函數(shù)的對(duì)稱軸的方程為,且,即,解得,所以,又由,所以函數(shù)必須取得最大值和最小值,所以可設(shè),所以
8、,當(dāng)時(shí),的最小值,故選D.【點(diǎn)睛】本題主要考查了正弦函數(shù)的圖象與性質(zhì),其中解答中利用三角恒等變換的公式,化簡(jiǎn)函數(shù)的解析式,合理利用正弦函數(shù)的對(duì)稱性與最值是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于中檔試題.6A【解析】根據(jù)正切函數(shù)的圖象求出A、B兩點(diǎn)的坐標(biāo),再求出向量的坐標(biāo),根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算求出結(jié)果【詳解】由圖象得,令=0,即=k,k=0時(shí)解得x=2,令=1,即,解得x=3,A(2,0),B(3,1),.故選:A.【點(diǎn)睛】本題考查正切函數(shù)的圖象,平面向量數(shù)量積的運(yùn)算,屬于綜合題,但是難度不大,解題關(guān)鍵是利用圖象與正切函數(shù)圖象求出坐標(biāo),再根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算可得結(jié)果,屬于簡(jiǎn)
9、單題.7C【解析】作出不等式組所表示的可行域,平移直線,找出直線在軸上的截距最大時(shí)對(duì)應(yīng)的最優(yōu)解,代入目標(biāo)函數(shù)計(jì)算即可.【詳解】作出滿足約束條件的可行域如圖陰影部分(包括邊界)所示由,得,平移直線,當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),該直線在軸上的截距最大,此時(shí)取最大值,即.故選:C.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃問(wèn)題,考查線性目標(biāo)函數(shù)的最值,一般利用平移直線的方法找到最優(yōu)解,考查數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.8C【解析】利用的前項(xiàng)和求出數(shù)列的通項(xiàng)公式,可計(jì)算出,然后利用裂項(xiàng)法可求出的值.【詳解】.當(dāng)時(shí),;當(dāng)時(shí),由,可得,兩式相減,可得,故,因?yàn)橐策m合上式,所以.依題意,故.故選:C.【點(diǎn)睛】本題考查利用求,同時(shí)
10、也考查了裂項(xiàng)求和法,考查計(jì)算能力,屬于中等題.9C【解析】從頻率分布直方圖可知,用水量超過(guò)15m的住戶的頻率為,即分層抽樣的50戶中有0.350=15戶住戶的用水量超過(guò)15立方米所以小區(qū)內(nèi)用水量超過(guò)15立方米的住戶戶數(shù)為,故選C10D【解析】先化簡(jiǎn)得再求得解.【詳解】所以.故選:D【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算和模的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.11C【解析】由題得,又,聯(lián)立解方程組即可得,進(jìn)而得出雙曲線方程.【詳解】由題得 又該雙曲線的一條漸近線方程為,且被圓x2+y22cx0截得的弦長(zhǎng)為2,所以 又 由可得:,所以雙曲線的標(biāo)準(zhǔn)方程為.故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單
11、幾何性質(zhì),圓的方程的有關(guān)計(jì)算,考查了學(xué)生的計(jì)算能力.12C【解析】不妨設(shè)在第一象限,故,根據(jù)得到,解得答案.【詳解】不妨設(shè)在第一象限,故,即,即,解得,(舍去).故選:.【點(diǎn)睛】本題考查了橢圓的離心率,意在考查學(xué)生的計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13【解析】先由題意設(shè)向量的坐標(biāo),再結(jié)合平面向量數(shù)量積的運(yùn)算及不等式可得解【詳解】由是單位向量若,設(shè),則,又,則,則,則,又,所以,(當(dāng)或時(shí)取等)即的取值范圍是,故答案為:,【點(diǎn)睛】本題考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平1415【解析】由題得,令,解得,代入可得展開(kāi)式中含x6項(xiàng)的系數(shù).【詳解
12、】由題得,令,解得,所以二項(xiàng)式的展開(kāi)式中項(xiàng)的系數(shù)為.故答案為:15【點(diǎn)睛】本題主要考查了二項(xiàng)式定理的應(yīng)用,考查了利用通項(xiàng)公式去求展開(kāi)式中某項(xiàng)的系數(shù)問(wèn)題.155【解析】執(zhí)行循環(huán)結(jié)構(gòu)流程圖,即得結(jié)果.【詳解】執(zhí)行循環(huán)結(jié)構(gòu)流程圖得,結(jié)束循環(huán),輸出.【點(diǎn)睛】本題考查循環(huán)結(jié)構(gòu)流程圖,考查基本分析與運(yùn)算能力,屬基礎(chǔ)題.1655【解析】由求出.由,可得,兩式相減,可得數(shù)列是以1為首項(xiàng),1為公差的等差數(shù)列,即求.【詳解】由題意,當(dāng)n=1時(shí),當(dāng)時(shí),由,可得,兩式相減,可得,整理得,即,數(shù)列是以1為首項(xiàng),1為公差的等差數(shù)列,.故答案為:55.【點(diǎn)睛】本題考查求數(shù)列的前項(xiàng)和,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)
13、寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(1)證明見(jiàn)解析;(2).【解析】(1)連接,連接、交于點(diǎn),并連接,則點(diǎn)為的中點(diǎn),利用中位線的性質(zhì)得出,利用空間平行線的傳遞性可得出,然后利用線面平行的判定定理可證得結(jié)論;(2)推導(dǎo)出平面,并計(jì)算出,由此可得出到平面的距離為,即可得解.【詳解】(1)連接,連接、交于點(diǎn),并連接,則點(diǎn)為的中點(diǎn),、分別為、的中點(diǎn),則,同理可得,.平面,平面,因此,平面;(2)由于在底面的投影為,平面,平面,為正三角形,且為的中點(diǎn),平面,且,因此,到平面的距離為.【點(diǎn)睛】本題考查線面平行的證明,同時(shí)也考查了點(diǎn)到平面距離的計(jì)算,考查推理能力與計(jì)算能力,屬于中等題.18();()【解
14、析】試題分析:(1)依題意,由點(diǎn)到直線的距離公式可得,又有,聯(lián)立可求離心率;(2)由(1)設(shè)橢圓方程,再設(shè)直線方程,與橢圓方程聯(lián)立,求得,令,可得,即得橢圓方程.試題解析:()過(guò)點(diǎn)的直線方程為,則原點(diǎn)到直線的距離,由,得,解得離心率.()由(1)知,橢圓的方程為.依題意,圓心是線段的中點(diǎn),且.易知,不與軸垂直.設(shè)其直線方程為,代入(1)得.設(shè),則,.由,得,解得.從而.于是.由,得,解得.故橢圓的方程為.19(1)(2)的周長(zhǎng)為,時(shí),的周長(zhǎng)為【解析】(1)設(shè)的方程為,根據(jù)題意由點(diǎn)到直線的距離公式可得,將直線方程與拋物線方程聯(lián)立可得,設(shè)坐標(biāo)分別是,利用韋達(dá)定理以及中點(diǎn)坐標(biāo)公式消參即可求解.(2)
15、根據(jù)拋物線的定義可得,由(1)可得,再利用弦長(zhǎng)公式即可求解.【詳解】(1)設(shè)的方程為于是聯(lián)立設(shè)坐標(biāo)分別是則設(shè)的中點(diǎn)坐標(biāo)為,則消去參數(shù)得:(2)設(shè),由拋物線定義知,由(1)知,的周長(zhǎng)為時(shí),的周長(zhǎng)為【點(diǎn)睛】本題考查了動(dòng)點(diǎn)的軌跡方程、直線與拋物線的位置關(guān)系、拋物線的定義、弦長(zhǎng)公式,考查了計(jì)算能力,屬于中檔題.20(1);(2)10【解析】(1)消去參數(shù),可得曲線C的普通方程,再根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,代入即可求得曲線C的極坐標(biāo)方程;(2)將代入曲線C的極坐標(biāo)方程,利用根與系數(shù)的關(guān)系,求得,進(jìn)而得到=,結(jié)合三角函數(shù)的性質(zhì),即可求解.【詳解】(1)由題意,曲線C的參數(shù)方程為,消去參數(shù),可得曲線C
16、的普通方程為,即,又由,代入可得曲線C的極坐標(biāo)方程為.(2)將代入,得,即,所以=,其中,當(dāng)時(shí),取最大值,最大值為10.【點(diǎn)睛】本題主要考查了參數(shù)方程與普通方程,極坐標(biāo)方程與直角坐標(biāo)方程的互化,以及曲線的極坐標(biāo)方程的應(yīng)用,著重考查了運(yùn)算與求解能力,屬于中檔試題.21(1);(2).【解析】(1)先求出角,進(jìn)而可得出,則中有且只有一個(gè)正確,正確,然后分正確和正確兩種情況討論,結(jié)合三角形的面積公式和余弦定理可求得的值;(2)計(jì)算出和,計(jì)算出,可得出,進(jìn)而可求得的面積.【詳解】(1)因?yàn)?,所以,得,為鈍角,與矛盾,故中僅有一個(gè)正確,正確.顯然,得.當(dāng)正確時(shí),由,得(無(wú)解);當(dāng)正確時(shí),由于,得;(2)如圖,因?yàn)?,則,則,.【點(diǎn)睛】本題考查解三角形綜合應(yīng)用,涉及三角形面積公式和
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 武漢輕工大學(xué)《語(yǔ)言信息處理》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五版?zhèn)€人與企業(yè)間的商務(wù)汽車租賃及行程安排合同3篇
- 二零二五版旅游產(chǎn)業(yè)反擔(dān)保合同與旅游資產(chǎn)抵押協(xié)議3篇
- 二零二五年建筑玻璃采購(gòu)合同標(biāo)準(zhǔn)2篇
- 二零二五年度離婚后按揭房產(chǎn)權(quán)屬分割及子女撫養(yǎng)費(fèi)用協(xié)議3篇
- 個(gè)人借款擔(dān)保合同書2024年版版B版
- 二零二五年知識(shí)產(chǎn)權(quán)保護(hù)保密協(xié)議翻譯服務(wù)協(xié)議3篇
- 二零二五版企業(yè)內(nèi)部無(wú)息短期資金互助借款合同3篇
- 天津財(cái)經(jīng)大學(xué)《兒童美術(shù)創(chuàng)作與指導(dǎo)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024版股權(quán)合作的協(xié)議書范本
- GB/T 12914-2008紙和紙板抗張強(qiáng)度的測(cè)定
- GB/T 1185-2006光學(xué)零件表面疵病
- ps6000自動(dòng)化系統(tǒng)用戶操作及問(wèn)題處理培訓(xùn)
- 家庭教養(yǎng)方式問(wèn)卷(含評(píng)分標(biāo)準(zhǔn))
- 城市軌道交通安全管理課件(完整版)
- 線纜包覆擠塑模設(shè)計(jì)和原理
- TSG ZF001-2006 安全閥安全技術(shù)監(jiān)察規(guī)程
- 部編版二年級(jí)語(yǔ)文下冊(cè)《蜘蛛開(kāi)店》
- 鍋爐升降平臺(tái)管理
- 200m3╱h凈化水處理站設(shè)計(jì)方案
- 個(gè)體化健康教育記錄表格模板1
評(píng)論
0/150
提交評(píng)論