yong線面平行性質(zhì)_第1頁
yong線面平行性質(zhì)_第2頁
yong線面平行性質(zhì)_第3頁
yong線面平行性質(zhì)_第4頁
yong線面平行性質(zhì)_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、直線與平面平行的性質(zhì)1直線與平面有什么樣的位置關(guān)系?1.直線在平面內(nèi)有無數(shù)個公共點;2.直線與平面相交有且只有一個公共點;3.直線與平面平行沒有公共點。溫故知新2線面平行的判定定理 如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。ba注意1、定理三個條件缺一不可。2、簡記:線線平行,則線面平行。3、定理告訴我們:要證線面平行,得在面內(nèi)找一條線,使線線平行。溫故知新3證題思路:要證明兩平面平行,關(guān)鍵是在其中一個平面內(nèi)找出兩條相交直線分別平行于另一個平面. 平面與平面平行的判定定理:一個平面內(nèi)兩條相交直線分別平行于另一個平面,那么這兩個平面平行.符號語言:線不在多,重在相

2、交.溫故知新4注意:1、定理五個條件缺一不可。2、簡記:線面平行,則面面平行。3、定理告訴我們:要證面面平行,得在其中一個面內(nèi)找出兩條相交直線,使線面平行。4.應(yīng)用判定定理判定面面平行的關(guān)鍵是: 找平行線.常用的依據(jù)有: 平行四邊形的性質(zhì); 三角形或梯形的中位線定理.5abA平面與平面平行判定定理的推論: 如果一個平面內(nèi)有兩條相交直線平行于另一個平面內(nèi)兩條相交直線,那么這兩個平面平行。ab溫故知新6思考1:如果直線a與平面平行,那么直線a與平面內(nèi)的直線有哪些位置關(guān)系?思考2:若直線a與平面平行,那么在平面內(nèi)與直線a平行的直線有多少條?這些直線的位置關(guān)系如何?aa7思考3:如果直線a與平面平行,

3、那么經(jīng)過直線a的平面與平面有幾種位置關(guān)系?aa8思考4:如果直線a與平面平行,經(jīng)過直線a的平面與平面相交于直線b,那么直線a、b的位置關(guān)系如何?為什么?abb思考5:如果直線a與平面平行,那么經(jīng)過平面內(nèi)一點P且與直線a平行的直線怎樣定位?Pa9思考1:綜上分析,在直線與平面平行的條件下可以得到什么結(jié)論?并用文字語言表述之.猜想:如果一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行. 直線與平面平行的性質(zhì)定理:10文字語言:圖形語言:符號語言:如何證明:直線與平面平行的性質(zhì)定理:11證明:b直線與平面平行的性質(zhì)定理:12 如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這

4、個平面相交,那么這條直線和交線平行 直線與平面平行的性質(zhì)定理:(線面平行 線線平行) (1)三個條件:(2)用途:證明線線平行(3)線面平行 線線平行性質(zhì)定理判定定理13思考3:直線與平面平行的性質(zhì)定理可簡述為“線面平行,則線線平行”,在實際應(yīng)用中它有何功能作用?作平行線的方法,判斷線線平行的依據(jù). ab14練習(xí) 1.以下命題(其中a,b表示直線,表示平面)若ab,b,則a . ( ) 若a,b,則ab . ( ) 若ab,b,則a . ( ) 若a,b,則ab . ( ) 其中正確命題的個數(shù)是 ( ) (A)0個(B)1個 (C)2個(D)3個15例1:有一塊木料如圖,已知棱BC平行于面AC

5、(1)要經(jīng)過木料表面ABCD 內(nèi)的一點P和棱BC將木料鋸開,應(yīng)怎樣畫線?(2)所畫的線和面AC有什么關(guān)系?典例剖析 16解:()如圖,在平面AC內(nèi),過點作直線,使/BC,并分別交棱AB,CD于點,連接,則,就是應(yīng)畫的線/不在平面內(nèi)在平面內(nèi)/平面,顯然都與平面相交()因為棱平行于平面AC ,平面BC與平面AC交于BC ,所以,/ BC由()知,/ BC 所以/,因此典例剖析 17例2 已知:平面外的兩條平行直線中 的一條平行于這個平面求證:另一條也平行于這個平面18線/線線/面轉(zhuǎn)化是立體幾何的一種重要的思想方法。注意:192.在空間四邊形ABCD中,M,N分別是線段AB,AD上的點,若AM:MB

6、=AN:ND,P為線段上CD上的一點(P與D不重合),過M,N,P的平面與直線BC交于Q,求證:BD/PQABCDMNPQ練習(xí) 20直線和平面平行的性質(zhì)定理 如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。ba注意:1、定理三個條件缺一不可。ba/2、簡記:線面平行 線線平行。小結(jié) 21證明線面、面面平行的轉(zhuǎn)化思想:線/線線/面面/面(1)平行公理(2)三角形中位線(3)平行線的判定定理(4)相似三角形對應(yīng)邊成比例(5)平行四邊形對邊平行由a / , 通過構(gòu)造過直線 a 的平面 與平面 相交于直線b,只要證得a / b即可。小結(jié) 22直線和平面平行的性質(zhì)定

7、理 如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。ba注意:1、定理三個條件缺一不可。ba/2、簡記:線面平行 線線平行。23思考1:若 ,則直線l與平面的位置關(guān)系如何? l思考2:若 ,直線l與平面平行,那么直線l與平面的位置關(guān)系如何?ll24思考4:若 ,平面與平面相交,則平面與平面的位置關(guān)系如何? 思考3:若 ,直線l與平面相交,那么直線l與平面的位置關(guān)系如何?l25思考5:若 ,平面、分別與平面相交于直線a、b,那么直線a、b的位置關(guān)系如何?為什么?ab26思考1:由下圖反映出來的性質(zhì)就是一個定理,分別用文字語言和符號語言可以怎樣表述?定理 如果

8、兩個平行平面同時和第三個平面相交,那么它們的交線平行.ab平面與平面平行的性質(zhì)定理27思考2:上述定理通常稱為平面與平面平行的性質(zhì)定理,該定理在實際應(yīng)用中有何功能作用? 判定兩直線平行的依據(jù)ab28思考3:如果兩個相交平面同時和第三個平面相交,那么它們的交線的位置關(guān)系如何?ablbal29思考4:若 ,那么在平面內(nèi)經(jīng)過點P且與l 平行的直線存在嗎?有幾條?lP思考5:若平面、都與平面平行,則平面與平面的位置關(guān)系如何?30例1 求證:夾在兩個平行平面間的平行線段相等.DBAC典例剖析31例2 在正方體ABCD-ABCD中,點M在CD上,試判斷直線BM與平面ABD的位置關(guān)系,并說明理由. ABCDABCDM典例剖析32例3 如圖,已知AB、CD是夾在兩個平行平面、之間的線段,M、N分別為AB、CD的中點,求證:MN平面.ABCDMNEl典例剖析33 ac bc c c c ac a 1.、為三個不重合的平面,a,b,c為三條不同直線,則有一下列命題,不正確的是 a b ababaa練習(xí)342 . P是長方形ABCD所在平面外的一點,AB、PD兩點M、N滿足AM:MB=ND:NP。求證:MN平面PBC。PNMDCBAE練習(xí)35HO3.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論