2022屆四川省武勝烈面高三六校第一次聯(lián)考數(shù)學試卷含解析_第1頁
2022屆四川省武勝烈面高三六校第一次聯(lián)考數(shù)學試卷含解析_第2頁
2022屆四川省武勝烈面高三六校第一次聯(lián)考數(shù)學試卷含解析_第3頁
2022屆四川省武勝烈面高三六校第一次聯(lián)考數(shù)學試卷含解析_第4頁
2022屆四川省武勝烈面高三六校第一次聯(lián)考數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知函數(shù),若,則的最小值為( )參考數(shù)據(jù):ABCD2兩圓和相外切,且,則的最大值為( )AB9CD13若的展開式中的系數(shù)為-45,則實數(shù)的值為()AB2CD4我國古代數(shù)學巨著九章算術

2、中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據(jù)上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是( )A2B3C4D15已知向量,且,則m=( )A8B6C6D86函數(shù)的圖象如圖所示,為了得到的圖象,可將的圖象( )A向右平移個單位B向右平移個單位C向左平移個單位D向左平移個單位7已知定義在上函數(shù)的圖象關于原點對稱,且,若,則( )A0B1C673D6748下列函數(shù)中,在區(qū)間上單調(diào)遞減的是( )ABC D9( )ABC1D10復數(shù)的共

3、軛復數(shù)記作,已知復數(shù)對應復平面上的點,復數(shù):滿足.則等于( )ABCD11設f(x)是定義在R上的偶函數(shù),且在(0,+)單調(diào)遞減,則( )ABCD12某四棱錐的三視圖如圖所示,則該四棱錐的體積為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13如圖,橢圓:的離心率為,F(xiàn)是的右焦點,點P是上第一角限內(nèi)任意一點,若,則的取值范圍是_14若,則_.15在平面直角坐標系中,曲線在點處的切線與x軸相交于點A,其中e為自然對數(shù)的底數(shù).若點,的面積為3,則的值是_.16已知向量=(4,3),=(6,m),且,則m=_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分

4、)如圖,在平面直角坐標系中,已知圓C:,橢圓E:()的右頂點A在圓C上,右準線與圓C相切.(1)求橢圓E的方程;(2)設過點A的直線l與圓C相交于另一點M,與橢圓E相交于另一點N.當時,求直線l的方程.18(12分)等差數(shù)列的前項和為,已知,(1)求數(shù)列的通項公式;(2)設數(shù)列的前項和為,求使成立的的最小值19(12分)已知拋物線的準線過橢圓C:(ab0)的左焦點F,且點F到直線l:(c為橢圓焦距的一半)的距離為4.(1)求橢圓C的標準方程;(2)過點F做直線與橢圓C交于A,B兩點,P是AB的中點,線段AB的中垂線交直線l于點Q.若,求直線AB的方程.20(12分)某地在每周六的晚上8點到10

5、點半舉行燈光展,燈光展涉及到10000盞燈,每盞燈在某一時刻亮燈的概率均為,并且是否亮燈彼此相互獨立.現(xiàn)統(tǒng)計了其中100盞燈在一場燈光展中亮燈的時長(單位:),得到下面的頻數(shù)表:亮燈時長/頻數(shù)1020402010以樣本中100盞燈的平均亮燈時長作為一盞燈的亮燈時長.(1)試估計的值;(2)設表示這10000盞燈在某一時刻亮燈的數(shù)目.求的數(shù)學期望和方差;若隨機變量滿足,則認為.假設當時,燈光展處于最佳燈光亮度.試由此估計,在一場燈光展中,處于最佳燈光亮度的時長(結果保留為整數(shù)).附:某盞燈在某一時刻亮燈的概率等于亮燈時長與燈光展總時長的商;若,則,.21(12分)已知三棱錐中側面與底面都是邊長為

6、2的等邊三角形,且面面,分別為線段的中點.為線段上的點,且.(1)證明:為線段的中點;(2)求二面角的余弦值.22(10分)聯(lián)合國糧農(nóng)組織對某地區(qū)最近10年的糧食需求量部分統(tǒng)計數(shù)據(jù)如下表:年份20102012201420162018需求量(萬噸)236246257276286(1)由所給數(shù)據(jù)可知,年需求量與年份之間具有線性相關關系,我們以“年份2014”為橫坐標,“需求量”為縱坐標,請完成如下數(shù)據(jù)處理表格:年份20140需求量2570(2)根據(jù)回歸直線方程分析,2020年聯(lián)合國糧農(nóng)組織計劃向該地區(qū)投放糧食300萬噸,問是否能夠滿足該地區(qū)的糧食需求?參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距

7、的最小二乘估計分別為: ,.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】首先的單調(diào)性,由此判斷出,由求得的關系式.利用導數(shù)求得的最小值,由此求得的最小值.【詳解】由于函數(shù),所以在上遞減,在上遞增.由于,令,解得,所以,且,化簡得,所以,構造函數(shù),.構造函數(shù),所以在區(qū)間上遞減,而,所以存在,使.所以在上大于零,在上小于零.所以在區(qū)間上遞增,在區(qū)間上遞減.而,所以在區(qū)間上的最小值為,也即的最小值為,所以的最小值為.故選:A【點睛】本小題主要考查利用導數(shù)研究函數(shù)的最值,考查分段函數(shù)的圖像與性質(zhì),考查化歸與轉化的數(shù)學思想方法

8、,屬于難題.2A【解析】由兩圓相外切,得出,結合二次函數(shù)的性質(zhì),即可得出答案.【詳解】因為兩圓和相外切所以,即當時,取最大值故選:A【點睛】本題主要考查了由圓與圓的位置關系求參數(shù),屬于中檔題.3D【解析】將多項式的乘法式展開,結合二項式定理展開式通項,即可求得的值.【詳解】所以展開式中的系數(shù)為,解得.故選:D.【點睛】本題考查了二項式定理展開式通項的簡單應用,指定項系數(shù)的求法,屬于基礎題.4B【解析】將問題轉化為等比數(shù)列問題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問題.【詳解】根據(jù)實際問題可以轉化為等比數(shù)列問題,在等比數(shù)列中,公比,前項和為,求的值因為,解得,解得故選B【點睛】本題考查等比數(shù)列的實際應用

9、,難度較易.熟悉等比數(shù)列中基本量的計算,對于解決實際問題很有幫助.5D【解析】由已知向量的坐標求出的坐標,再由向量垂直的坐標運算得答案【詳解】,又,34+(2)(m2)0,解得m1故選D【點睛】本題考查平面向量的坐標運算,考查向量垂直的坐標運算,屬于基礎題6C【解析】根據(jù)正弦型函數(shù)的圖象得到,結合圖像變換知識得到答案.【詳解】由圖象知:,.又時函數(shù)值最大,所以.又,從而,只需將的圖象向左平移個單位即可得到的圖象,故選C.【點睛】已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點法”中相對應的特殊點求,一般用最高點或最低點求7B【解析】由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求

10、出知函數(shù)在一個周期內(nèi)的和是0,利用函數(shù)周期性對所求式子進行化簡可得.【詳解】因為為奇函數(shù),故;因為,故,可知函數(shù)的周期為3;在中,令,故,故函數(shù)在一個周期內(nèi)的函數(shù)值和為0,故.故選:B.【點睛】本題考查函數(shù)奇偶性與周期性綜合問題. 其解題思路:函數(shù)的奇偶性與周期性相結合的問題多考查求值問題,常利用奇偶性及周期性進行變換,將所求函數(shù)值的自變量轉化到已知解析式的函數(shù)定義域內(nèi)求解8C【解析】由每個函數(shù)的單調(diào)區(qū)間,即可得到本題答案.【詳解】因為函數(shù)和在遞增,而在遞減.故選:C【點睛】本題主要考查常見簡單函數(shù)的單調(diào)區(qū)間,屬基礎題.9A【解析】利用復數(shù)的乘方和除法法則將復數(shù)化為一般形式,結合復數(shù)的模長公式

11、可求得結果.【詳解】,因此,.故選:A.【點睛】本題考查復數(shù)模長的計算,同時也考查了復數(shù)的乘方和除法法則的應用,考查計算能力,屬于基礎題.10A【解析】根據(jù)復數(shù)的幾何意義得出復數(shù),進而得出,由得出可計算出,由此可計算出.【詳解】由于復數(shù)對應復平面上的點,則,因此,.故選:A.【點睛】本題考查復數(shù)模的計算,考查了復數(shù)的坐標表示、共軛復數(shù)以及復數(shù)的除法,考查計算能力,屬于基礎題.11D【解析】利用是偶函數(shù)化簡,結合在區(qū)間上的單調(diào)性,比較出三者的大小關系.【詳解】是偶函數(shù),而,因為在上遞減,即故選:D【點睛】本小題主要考查利用函數(shù)的奇偶性和單調(diào)性比較大小,屬于基礎題.12B【解析】由三視圖知該四棱錐

12、是底面為正方形,且一側棱垂直于底面,由此求出四棱錐的體積【詳解】由三視圖知該四棱錐是底面為正方形,且一側棱垂直于底面,畫出四棱錐的直觀圖,如圖所示:則該四棱錐的體積為.故選:B.【點睛】本題考查了利用三視圖求幾何體體積的問題,是基礎題二、填空題:本題共4小題,每小題5分,共20分。13【解析】由于點在橢圓上運動時,與軸的正方向的夾角在變,所以先設,又由,可知,從而可得,而點在橢圓上,所以將點的坐標代入橢圓方程中化簡可得結果【詳解】設,則,由,得,代入橢圓方程,得,化簡得恒成立,由此得,即,故故答案為:【點睛】此題考查的是利用橢圓中相關兩個點的關系求離心率,綜合性強,屬于難題 1413【解析】由

13、導函數(shù)的應用得:設,所以,又,所以,即,由二項式定理:令得:,再由,求出,從而得到的值;【詳解】解:設,所以,又,所以,即,取得:,又,所以,故,故答案為:13【點睛】本題考查了導函數(shù)的應用、二項式定理,屬于中檔題15【解析】對求導,再根據(jù)點的坐標可得切線方程,令,可得點橫坐標,由的面積為3,求解即得.【詳解】由題,切線斜率,則切線方程為,令,解得,又的面積為3,解得.故答案為:【點睛】本題考查利用導數(shù)研究函數(shù)的切線,難度不大.168.【解析】利用轉化得到加以計算,得到.【詳解】向量則.【點睛】本題考查平面向量的坐標運算、平面向量的數(shù)量積、平面向量的垂直以及轉化與化歸思想的應用.屬于容易題.三

14、、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)(2)或.【解析】(1)圓的方程已知,根據(jù)條件列出方程組,解方程即得;(2)設,顯然直線l的斜率存在,方法一:設直線l的方程為:,將直線方程和橢圓方程聯(lián)立,消去,可得,同理直線方程和圓方程聯(lián)立,可得,再由可解得,即得;方法二:設直線l的方程為:,與橢圓方程聯(lián)立,可得,將其與圓方程聯(lián)立,可得,由可解得,即得.【詳解】(1)記橢圓E的焦距為().右頂點在圓C上,右準線與圓C:相切.解得,橢圓方程為:.(2)法1:設,顯然直線l的斜率存在,設直線l的方程為:.直線方程和橢圓方程聯(lián)立,由方程組消去y得,整理得.由,解得.直線方程和圓

15、方程聯(lián)立,由方程組消去y得,由,解得.又,則有.即,解得,故直線l的方程為或.分法2:設,當直線l與x軸重合時,不符題意.設直線l的方程為:.由方程組消去x得,解得.由方程組消去x得,解得.又,則有.即,解得,故直線l的方程為或.【點睛】本題考查求橢圓的標準方程,以及直線和橢圓的位置關系,考查學生的分析和運算能力.18(1);(2)的最小值為19.【解析】(1)根據(jù)條件列方程組求出首項、公差,即可寫出等差數(shù)列的通項公式;(2)根據(jù)等差數(shù)列前n項和化簡,利用裂項相消法求和,解不等式即可求解.【詳解】(1)等差數(shù)列的公差設為,可得,解得,則;(2),前n項和為,即,可得,即,則的最小值為19.【點

16、睛】本題主要考查了等差數(shù)列的通項公式,等差數(shù)列的前n項和,裂項相消法求和,屬于中檔題19(1);(2)或.【解析】(1)由拋物線的準線方程求出的值,確定左焦點坐標,再由點F到直線l:的距離為4,求出即可;(2)設直線方程,與橢圓方程聯(lián)立,運用根與系數(shù)關系和弦長公式,以及兩直線垂直的條件和中點坐標公式,即可得到所求直線的方程.【詳解】(1)拋物線的準線方程為,直線,點F到直線l的距離為,所以橢圓的標準方程為;(2)依題意斜率不為0,又過點,設方程為,聯(lián)立,消去得,設,線段AB的中垂線交直線l于點Q,所以橫坐標為3,平方整理得,解得或(舍去),所求的直線方程為或.【點睛】本題考查橢圓的方程以及直線

17、與橢圓的位置關系,要熟練應用根與系數(shù)關系、相交弦長公式,合理運用兩點間的距離公式,考查計算求解能力,屬于中檔題.20(1)(2),,72【解析】(1)將每組數(shù)據(jù)的組中值乘以對應的頻率,然后再將結果相加即可得到亮燈時長的平均數(shù),將此平均數(shù)除以(個小時),即可得到的估計值;(2)利用二項分布的均值與方差的計算公式進行求解;先根據(jù)條件計算出的取值范圍,然后根據(jù)并結合正態(tài)分布概率的對稱性,求解出在滿足取值范圍下對應的概率.【詳解】(1)平均時間為(分鐘)(2),即最佳時間長度為72分鐘.【點睛】本題考查根據(jù)頻數(shù)分布表求解平均數(shù)、幾何概型(長度模型)、二項分布的均值與方差、正態(tài)分布的概率計算,屬于綜合性

18、問題,難度一般.(1)如果,則;(2)計算正態(tài)分布中的概率,一定要活用正態(tài)分布圖象的對稱性對應概率的對稱性.21(1)見解析;(2)【解析】(1)設為中點,連結,先證明,可證得,假設不為線段的中點,可得平面,這與矛盾,即得證;(2)以為原點,以分別為軸建立空間直角坐標系,分別求解平面,平面的法向量的法向量,利用二面角的向量公式,即得解.【詳解】(1)設為中點,連結.,又 平面,平面,.又分別為中點,又,.假設不為線段的中點,則與是平面內(nèi)內(nèi)的相交直線,從而平面,這與矛盾,所以為線段的中點.(2)以為原點,由條件面面,以分別為軸建立空間直角坐標系,則,.設平面的法向量為所以取,則,.同法可求得平面的法向量為,由圖知二面角為銳二面角,二面角的余弦值為.【點睛】本題考查了立體幾何與空間向量綜合,考查了學生邏輯推理,空間想象,數(shù)學運算的能力,屬于中檔題.22(1)見解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論