專(zhuān)題11 算法、推理與證明、復(fù)數(shù)(理)(教學(xué)案)_第1頁(yè)
專(zhuān)題11 算法、推理與證明、復(fù)數(shù)(理)(教學(xué)案)_第2頁(yè)
專(zhuān)題11 算法、推理與證明、復(fù)數(shù)(理)(教學(xué)案)_第3頁(yè)
專(zhuān)題11 算法、推理與證明、復(fù)數(shù)(理)(教學(xué)案)_第4頁(yè)
專(zhuān)題11 算法、推理與證明、復(fù)數(shù)(理)(教學(xué)案)_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、專(zhuān)題十一 算法、推理與證明、復(fù)數(shù)1.12015高考四川,1.12015高考四川,理3】執(zhí)行如圖所示的程序框圖,輸出S的值是(B)21(C)- 2(D)2【答案】D【解析】這是一個(gè)循環(huán)結(jié)構(gòu),每次循環(huán)的結(jié)果依次為:k = 2;k = 3;k = 4;k = 5,大于4,所以輸出57r I的5 二 5巾二=上,選D. 622.12015高考新課標(biāo)1,理9】執(zhí)行右面的程序框圖,如果輸入的占0.01,則輸出的=()(A) 5(B) 6(C) 7(D) 8【答案】C_1YYI【解析】執(zhí)行第 1 次,z=0.01,S=l,H=0,m= =0.5,S=S-m=0.5,m = =0.25,=l,S=0.5u0.

2、01,22是,循環(huán),3.12015高考重慶,理7】執(zhí)行如題(7)圖所示的程序框圖,若輸入K的值為8,則判斷框圖可填入的條件是, 3A、s 一45B、s 一6C、51112D、5=t, =、=i477 1*4w+l :4+2i *477+3I 1 , I I , I i 9 I I ,二.高頻考點(diǎn)突破考點(diǎn)1復(fù)數(shù)的與實(shí)系數(shù)方程之間的關(guān)系【例1】【廣東省廣州市2013屆高三普通些業(yè)班綜合測(cè)試二】若1-2 3是虛數(shù)單位)是關(guān)于彳的方/ +2px+q = 0 1 p9q e R 的 一 個(gè) 解 , 貝U p + q =( ) TOC o 1-5 h z A.-3B.-lC.lD.3【規(guī)律方法】根與實(shí)系數(shù)

3、方程之間的關(guān)系體現(xiàn)在,一是根代入方程,相應(yīng)的等式成立;二是體現(xiàn)在韋達(dá)定理上,即實(shí)系數(shù)一元二次方程以2 +bx+c = 0W0,4力工 R)的兩根分別bc為否、X2 ,則玉+工2=,%工2=,不僅對(duì)A 2 0的情況成立,對(duì) 0z考點(diǎn)3算法與數(shù)列綜合【例3】【2013年高考遼寧卷】執(zhí)行如圖4示的程序框圖,若輸入加= 10,則輸出的$ =( ) TOC o 1-5 h z 51036- 72A. B. C. D.11115555【規(guī)律方法】若數(shù)列%為公差為d(dwO)的等差數(shù)列,型數(shù)列求和一般是利用裂項(xiàng)法,裂項(xiàng)公式為-,為了方便求出數(shù)列eN*的前項(xiàng)和,可以采用將沒(méi)數(shù)列中裂項(xiàng)后被減項(xiàng)寫(xiě)在一起,減數(shù)項(xiàng)寫(xiě)

4、在a*+k起,方便觀察哪些項(xiàng)消去了,即HkdHkd%4+21+ 十 一kd aa tn n+k 71kd1+ axan)(1 1 + ak+ ak+20,但是在處理算法與數(shù)列求和問(wèn)題n+k )時(shí),一定要確定循環(huán)次數(shù),即在數(shù)列中有求和的項(xiàng)數(shù).【舉一反三】【2013年高考福建卷】閱讀如圖5所示的程序框圖,若編入的上=10,則該算 法的功能是()A.計(jì)算數(shù)列;2T;的前10項(xiàng)和B.計(jì)算數(shù)列;221;的前9項(xiàng)和C.計(jì)算數(shù)列;2龍的前10項(xiàng)和D.計(jì)算數(shù)列;2的前9項(xiàng)和考點(diǎn)4判斷條件的選擇【例4】【廣東言深圳市寶安區(qū)2014屆高三調(diào)研考試】運(yùn)行下圖框圖輸出的S是254 ,則應(yīng)為().A. 5D. 8C.

5、7B. -x+2的解集是.f = 1 + 3/(x) =8-2x/=2收考點(diǎn)6歸納推理【例6】【廣東省珠海一中等六校2014屆高三第一次聯(lián)考】將石子擺成如圖10的梯形形狀.稱(chēng)數(shù)列5、9、14、20、為“梯形數(shù)” .根據(jù)圖形的構(gòu)成,數(shù)列第6項(xiàng)& =;第項(xiàng)an =圖10【規(guī)律方法】歸納推理主要用于與自然數(shù)有關(guān)的等式或不等式的問(wèn)題中,一般在數(shù)列的推理 中常涉及.即通過(guò)前幾個(gè)等式或不等式出發(fā),找出其規(guī)律,即找出一般的項(xiàng)與項(xiàng)數(shù)之間的對(duì) 應(yīng)關(guān)系,一般的有平方關(guān)系、立方關(guān)系、指數(shù)變化關(guān)系或兩個(gè)相鄰的自然數(shù)或奇數(shù)相乘等基 本關(guān)系,需要對(duì)相應(yīng)的數(shù)字的規(guī)律進(jìn)行觀察、歸納,一般對(duì)于的等式或不等式中的項(xiàng)的結(jié)構(gòu) 保持一

6、致.【舉一反三】【山西省山大附中2014屆高三9月月考】觀察下列算式:妙=1, 23 =3 + 5, 33 =7 + 9 + 11, 43 =13 + 15 + 17 + 19,若某數(shù)切3按上述規(guī)律展開(kāi)后,發(fā)現(xiàn)等式右邊含有“2013”這個(gè)數(shù),則加=考點(diǎn)7類(lèi)比推理【例7】【陜西省西安市長(zhǎng)安區(qū)長(zhǎng)安一中2014屆高三第二次質(zhì)量檢測(cè)】對(duì)于命題:如果。是 線段A3上一點(diǎn),則|麗|函+ |國(guó)礪=6;將它類(lèi)比到平面的情形是:若O是小鉆。內(nèi)一點(diǎn),有SOBC + AOCASOBC + AOCAOB+Sa0.反=6;將它類(lèi)比到空間的情形應(yīng)該是:若O是四面體ABCD內(nèi)一點(diǎn),則有【規(guī)律方法】類(lèi)比推理主要是找出兩類(lèi)事物

7、的共性,一般的類(lèi)比有以下幾種:線段的長(zhǎng)度 平面幾何中平面圖形的面積一一立體幾何中立體圖形的體積的類(lèi)比;等差數(shù)列與等比 數(shù)列的類(lèi)比,等差數(shù)列中兩數(shù)相加類(lèi)比到等比數(shù)列中兩數(shù)相乘,等差數(shù)列中兩數(shù)的差類(lèi)比到 等比數(shù)列中兩數(shù)相除.在類(lèi)比的時(shí)候還需注意,有些時(shí)候不能將式子的結(jié)構(gòu)改變,只需將相 應(yīng)的量進(jìn)行替換.【雉一反三】【廣東省佛山市南海區(qū)2014屆高三8后質(zhì)檢】在等差數(shù)列中,若金=p,;7 ; i b e 27* i ,若 b =r fl Jfl1網(wǎng);7 ; i b e 27* i ,若 b =r fl Jfl1網(wǎng),則外伸=”二絲類(lèi)比上述結(jié)論,對(duì)于等比數(shù)列 n-m4=s n-m 2,陽(yáng)% e獷i ,則可

8、以得到考點(diǎn)8新定義【例8】【福建省廈門(mén)市外國(guó)語(yǔ)學(xué)校2014屆高三第一次月考】設(shè)/(%)與g(%)是定義在 同一區(qū)間上的兩個(gè)函數(shù),若函數(shù)y = /(x) g(x)在,可上有兩個(gè)不同的零點(diǎn),則稱(chēng)“X)和 g(x)在0可上是“關(guān)聯(lián)函數(shù)”,區(qū)間a,可稱(chēng)為“關(guān)聯(lián)區(qū)間”.若/(x) = 3x+4與g(x) = 2x+m 在0,3上是“關(guān)聯(lián)函數(shù)”,則機(jī)的取值范圍為()(o 1A. 2B.-1,0C.(-oo,2(9)D.,+oo、4【規(guī)律方法】新定義主要應(yīng)用于函數(shù)、解析幾何以及數(shù)列中,一般先要理解題中的新定義,然后借助相應(yīng)的方法進(jìn)行求解.對(duì)于函數(shù)或數(shù)列不等式恒成立問(wèn)題以及函數(shù)零點(diǎn)個(gè)數(shù)問(wèn)題,一般采用分類(lèi)討論法

9、或參數(shù)分離法求解;對(duì)于解析幾何中的新定義,一般結(jié)合圖象來(lái)量化問(wèn)題,將問(wèn)題中涉及的幾 何量利用圖形直觀地表示出來(lái),從圖形中得到準(zhǔn)確解答.【舉一反三】【2013年高考福建卷】設(shè)S、7是R的兩個(gè)非空子集,如果存在一個(gè)從S到7的函數(shù)y = /(x)滿(mǎn)足: T = xe 5 ; (ii)對(duì)任意用、x2 e S ,當(dāng)王時(shí),恒有/(現(xiàn))/(/),那么稱(chēng)這兩個(gè)集合“保序同構(gòu)。以下集合對(duì)不是“保序同構(gòu)”的是()A.A = N1B = NB.A = x-1x39 3 = 小=-8或0 x410C.A = |x|O x 1, B = RD.A = Z, B = Q考點(diǎn)9數(shù)學(xué)歸納法【例9【廣東省五校協(xié)作體2014屆高

10、三第二次聯(lián)考】已知數(shù)列;的前項(xiàng)和(1、龍-1工=一% -+2 (總為正整數(shù)).令4 = ? 4 ,求證數(shù)列色是等差數(shù)列,并求數(shù)列;aJ的通項(xiàng)公式;(2)令 =空巳, =q + c + c 試比較式與上的大小,并予以證明.n3% + 1【規(guī)律方法】數(shù)學(xué)歸納法一般用于與自然數(shù)有關(guān)的命題、等式或不等式的證明,其解題步驟 為:第二數(shù)學(xué)歸納法的證明步驟是:歸納奠基:證明當(dāng)取第一個(gè)自然數(shù)小時(shí)命題成立; 歸納遞推:假設(shè)=左(左時(shí),命題成立,證明當(dāng)=左+ 1時(shí),命題成立;由得出結(jié)論.利用 數(shù)學(xué)歸納法來(lái)進(jìn)行證明時(shí),需要注意兩個(gè)問(wèn)題:一是驗(yàn)證時(shí)幾的初始值不一定為1,要視 具體情況而定;二是由 二%到=攵+ 1時(shí),

11、所需的跨度,即式子兩邊增加了多少項(xiàng).【舉一反三】【江蘇省揚(yáng)州中學(xué)2014屆高三開(kāi)學(xué)考試】數(shù)列2 -1的前項(xiàng)組成集合4 =1,3,7,2 一 1 ( N)從集合中任取左(左=L 2,3, 一 n)個(gè)數(shù),其所有可能的個(gè) 數(shù)的乘積的和為 (若只取一個(gè)數(shù),規(guī)定乘積為此數(shù)本身),記5=刀+5+.+ 7;.例如: 當(dāng) =1 時(shí),4=1,(=1,工=1;當(dāng) =2時(shí),&=1,3, 7; =1 + 3, 7; =1x3, S)=14-3 + 1x3 = 7.(1)求 S3 ;(2)猜想S,并用數(shù)學(xué)歸納法證明.三.錯(cuò)混辨析.忽視判別式適用的前提【例1】求實(shí)數(shù)用的取值范圍,使方程d+(M+4i)x+(l + 27加

12、)=0至少有一個(gè)實(shí)根.【錯(cuò)解】由于方程/+(w + 4i)x + l+2滋)=0至少有一根,則 A =(活+ 4?9一 4 (1 + 2碗)= - 20之0 ,解得m 或我之2 ,故實(shí)數(shù)m的取值 范圍是I -oo,-2u2j5,+oo I.【錯(cuò)原】忽略了 A 0判斷一元二次方程使用的情形,利用A的符號(hào)來(lái)判斷一元二次方程是 否存在實(shí)根的前提是實(shí)系數(shù)一元二次方程.【正解】設(shè)+i w + 4i ix + il+2而 = 0的一個(gè)實(shí)數(shù)根為|白丘處,則 a2 +(幽+ 42 + 11+2碗 = 0 ,即1 / +am + l + i4a+2m)i = 0,士口毋一拈皿=曰 1/+胸+ 1=0 切/曰(加

13、=2 f網(wǎng)=-2根據(jù)旻數(shù)相等待,解傳或 ,故附=2.4 + 2m = 0a = -1 a = 1.忽視對(duì)循環(huán)結(jié)構(gòu)的合理分析【例2】如果執(zhí)行如圖11所示的程序框圖,那么輸出的S=()A. 1275B. 2550C. 5050D. 2500【答案】C【解析】由程序框圖,攵的值依次為0, 2, 4, 6, 8,因此S=L + = U (止匕時(shí)左=6) 2 4 6 12還必須計(jì)算一次,因此可填選C12A. k 6B. k&7C. kSD.k(n2Y TOC o 1-5 h z 2 3 42,2-12 7【錯(cuò)解】 設(shè)=一 + + HF-234211509(1)當(dāng)加=2時(shí),左邊=/(2) = 2+上=已,

14、右邊=0,左邊右邊,不等式成立;(2 )假設(shè)當(dāng)力 = kkN2,kwM時(shí),不等式成立,即有2-12n =上+11 上一 21k2 1(& + 1) - 2廠 -7 + 1 . -+7 =%結(jié)合(1) (2)可知,時(shí)任意加之2且正eM,有1 +4+4+匕成立.2 3 42”一12【錯(cuò)原】沒(méi)有把握好不等式左邊的規(guī)律,以致在利用數(shù)學(xué)歸納法從總=上到=上+1的證明 過(guò)程中沒(méi)有弄清左邊增加的項(xiàng)數(shù).【正解】設(shè)/(加)=二+1+音二, TOC o 1-5 h z 2 3 42*-111599(1)當(dāng)總=2時(shí),左邊=/(2) = 1 + -=-,右邊=0,左邊右邊,不等式成立; 2 3 62(2 )假設(shè)當(dāng)n

15、= kk2,ke!T時(shí),不等式成立,即有/(幻=/(幻=一 .一 11 1 - 11 1=y jt + 1 = y Ar H H 1F : y + r-r H J-r H1Jr2* 2反 + 2 bi ) , 2同i2kl2 此 aY2個(gè)=始+2,*=力/1 + 1 乙乙戊 +11 22=右邊,結(jié)合(1) (2)可知,對(duì)任意總之2且用eM,有1 +1+ L匕成立. 2 3 42*-12L (原創(chuàng)題)在復(fù)數(shù)集C上定義運(yùn)算“”:當(dāng)之閆時(shí),Z(Z2=五;當(dāng)時(shí), Z2Z(g)Z2=Z1Z2,若 Z=l + 3i, z2=l + i, z3=3-i9 則復(fù)數(shù)(Z1(8)Z2)W)Z3 在復(fù)平面內(nèi)所對(duì)應(yīng)的

16、點(diǎn)位于 ()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限.(原創(chuàng)題)執(zhí)行如圖12所示的算法程序框圖,若輸出的y值滿(mǎn)足則輸入的x值 的取值范圍是(開(kāi)始)(結(jié)束)Mu.【廣東省汕頭四中2014屆高三第一次月考】將全體正奇數(shù)排成一個(gè)三角形數(shù)陣:13 57 9 1113 15 17 19按照以上排列的規(guī)律,第行( 2 3)從左向右的第3個(gè)數(shù)為.4.(原創(chuàng)題)已知平面坐標(biāo)系內(nèi)兩點(diǎn)A(西,y)、3(%,%),定義直角距離d(A8)=,司+ |/一%| 已知點(diǎn)。(1,3),點(diǎn)Q為直線x+y + 2 = o上一點(diǎn),貝1J d(P,Q)的最小值是.5.【湖北省武漢市部分學(xué)校2014屆高三11月聯(lián)考】已知函數(shù)/(R的導(dǎo)函數(shù)為且/1 x I 對(duì)任意x0,都有一.X/ I x I(1)判斷函數(shù)F(x)=在(0,向)上的單調(diào)性; x(2)設(shè)公、x2 e ( 0,4-00),證明:/( Xj)4-/( x2 ) n.,命題都成立,這種證明方法叫做數(shù)學(xué)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論