神經(jīng)網(wǎng)絡(luò)及卷積神經(jīng)網(wǎng)絡(luò)用于手寫(xiě)數(shù)字識(shí)別_第1頁(yè)
神經(jīng)網(wǎng)絡(luò)及卷積神經(jīng)網(wǎng)絡(luò)用于手寫(xiě)數(shù)字識(shí)別_第2頁(yè)
神經(jīng)網(wǎng)絡(luò)及卷積神經(jīng)網(wǎng)絡(luò)用于手寫(xiě)數(shù)字識(shí)別_第3頁(yè)
神經(jīng)網(wǎng)絡(luò)及卷積神經(jīng)網(wǎng)絡(luò)用于手寫(xiě)數(shù)字識(shí)別_第4頁(yè)
神經(jīng)網(wǎng)絡(luò)及卷積神經(jīng)網(wǎng)絡(luò)用于手寫(xiě)數(shù)字識(shí)別_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、A Hand-writing digit recognition Application base on Neural network and covolutional neural networkColleague of Computer ScienceInner Mongolia UniversityHohhot , Inner Mongolia , P.R ChinaEmail: huangzhiqiang共二十一頁(yè)NN digit recognition1. Background2. Method neural network back-propagation3. Experiment

2、 training and testing samples neural network structure results共二十一頁(yè)OCR (Optical Character Recognition) has become one of the important methods in gathering information and information transformation. Digit recognition has a promising feature in many fields in society, such as the car license plate r

3、ecognition , postcode recognition, the statistics of report forms and financial report forms. So the research on the Digit recognition is important.background共二十一頁(yè)neural networkNeural network is a machine learning method.method共二十一頁(yè)Back PropagationBack propagation(BP) is a neural network learning al

4、gorithm.method共二十一頁(yè)EnvironmentHardware: CPU: Intel core i7 3630QM, 2.4GHZ Memory: 8G ByteSoftware: OS: windows 7 (64) IDE: vs2010 (C+)Experiment共二十一頁(yè)Experiment-Training and testing SamplesTraining and testing samples are fromMNIST ,/exdb/mnist/Every pic is a 28*28 dot matrixThere are 10 pics in a sa

5、mple,and there are 891 samples Experiment共二十一頁(yè)Neural network designOur neural network has 3 layers:LayerInput layerHidden layerOutput layerDimension14*14=19619610meaningAverage grey value of four neighbor dotsEmpirical value , about 11.5 times of the inputTarget numbers , I.e. 0,1,2,3.9Experiment共二十

6、一頁(yè)neural network designBP neural networkExperiment共二十一頁(yè)resultsTraining samples:Testing samples:Training itemsSample picsRight predictionRight ratioTraining timevalue7000688898.4%603 476msTesting itemstest picsRight predictionRight ratioTraining timevalue1900179194.2632%908ms(0.48ms/pic)Experiment共二十

7、一頁(yè)卷積神經(jīng)網(wǎng)絡(luò)基于人工神經(jīng)網(wǎng)絡(luò)在人工神經(jīng)網(wǎng)絡(luò)前,用濾波器進(jìn)行特征抽取(chu q)使用卷積核作為特征抽取器自動(dòng)訓(xùn)練特征抽取器(即卷積核,即閾值參數(shù))共二十一頁(yè)卷積卷積其實(shí)(qsh)是一個(gè)圖像處理核卷積用于增強(qiáng)圖像的某種特征共二十一頁(yè)卷積的例子(l zi)共二十一頁(yè)子采樣(ci yn)降低圖像分辨率減少(jinsho)訓(xùn)練維數(shù)增強(qiáng)網(wǎng)絡(luò)對(duì)大小變化的適用性共二十一頁(yè)一般(ybn)卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)共二十一頁(yè)我的卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)(jigu)共二十一頁(yè)實(shí)驗(yàn)(shyn)效果共二十一頁(yè)訓(xùn)練(xnlin)時(shí)間次數(shù)及準(zhǔn)確率共二十一頁(yè)問(wèn)題(wnt)1 準(zhǔn)確率太低2 準(zhǔn)確率抖動(dòng)厲害3 單線(xiàn)程,訓(xùn)練(xnlin)速度太慢共二十一頁(yè)Thank you for listening!共二十一頁(yè)內(nèi)容摘要A Hand-writing digit recognition Application base on Neural network and covolutional neural network。A Hand-writing digit recognition Application base on Neural network and covoluti

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論