Wavelet Spectral Analysis - University of Colorado Boulder:小波功率譜分析-科羅拉多大學博爾德分校_第1頁
Wavelet Spectral Analysis - University of Colorado Boulder:小波功率譜分析-科羅拉多大學博爾德分校_第2頁
Wavelet Spectral Analysis - University of Colorado Boulder:小波功率譜分析-科羅拉多大學博爾德分校_第3頁
Wavelet Spectral Analysis - University of Colorado Boulder:小波功率譜分析-科羅拉多大學博爾德分校_第4頁
Wavelet Spectral Analysis - University of Colorado Boulder:小波功率譜分析-科羅拉多大學博爾德分校_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、Wavelet Spectral AnalysisKen Nowak7 December 2010Need for spectral analysisMany geo-physical data have quasi-periodic tendencies or underlying variabilitySpectral methods aid in detection and attribution of signals in dataFourier Approach LimitationsResults are limited to globalScales are at specifi

2、c, discrete intervalsPer fourier theory, transformations at each scale are orthogonal Wavelet BasicsWf(a,b)= f(x) y(a,b) (x) dxMorlet wavelet with a=0.5Function to analyzeIntegrand of wavelet transform|W(a=0.5,b=6.5)|2=0|W(a=0.5,b=14.1)|2=.44b=2graphics courtesy of Matt DillinWavelets detect non-sta

3、tionary spectral componentsWavelet BasicsHere we explore the Continuous Wavelet Transform (CWT)No longer restricted to discrete scalesAbility to see “l(fā)ocal” features Mexican hat wavelet Morlet waveletGlobal Wavelet Spectrum|Wf (a,b)|2functionWavelet spectruma=2a=1/2Global wavelet spectrumSlide court

4、esy of Matt DillinWavelet DetailsConvolutions between wavelet and data can be computed simultaneously via convolution theorem.Wavelet transformWavelet functionAll convolutions at scale “a”Analysis of Lees Ferry DataLocal and global wavelet spectraCone of influence Significance levelsAnalysis of ENSO

5、 DataCharacteristic ENSO timescaleGlobal peakSignificance LevelsBackground Fourier spectrum for red noise process (normalized)Square of normal distribution is chi-square distribution, thus the 95% confidence level is given by:Where the 95th percentile of a chi-square distribution is normalized by th

6、e degrees of freedom. Scale-Averaged Wavelet PowerSAWP creates a time series that reflects variability strength over time for a single or band of scales Band ReconstructionsWe can also reconstruct all or part of the original data PACF indicates AR-1 modelStatistics capture observed values adequately

7、 Spectral range does not reflect observed spectrum Lees Ferry Flow Simulation Wavelet Auto Regressive Method (WARM) Kwon et al., 2007WARM and Non-stationary SpectraPower is smoothed across time domain instead of being concentrated in recent decadesWARM for Non-stationary SpectraResults for Improved

8、WARMWavelet Phase and CoherenceAnalysis of relationship between two data sets at range of scales and through timeCorrelation = .06Wavelet Phase and CoherenceCross Wavelet TransformFor some data X and some data Y, wavelet transforms are given as:Thus the cross wavelet transform is defined as:Phase An

9、gleCross wavelet transform (XWT) is complex. Phase angle between data X and data Y is simply the angle between the real and imaginary components of the XWT: Coherence and CorrelationCorrelation of X and Y is given as:Which is similar to the coherence equation:SummaryWavelets offer frequency-time localization of spectral powerSAWP visualizes how power changes for a given scale or band as a time series“Band pass” reconstructions can be performed from the wavelet transformWARM is an attractive simulation method that capture

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論