2021-2022學年江蘇省蘇州市某學校數(shù)學單招試卷(含答案)_第1頁
2021-2022學年江蘇省蘇州市某學校數(shù)學單招試卷(含答案)_第2頁
2021-2022學年江蘇省蘇州市某學校數(shù)學單招試卷(含答案)_第3頁
2021-2022學年江蘇省蘇州市某學校數(shù)學單招試卷(含答案)_第4頁
2021-2022學年江蘇省蘇州市某學校數(shù)學單招試卷(含答案)_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022學年江蘇省蘇州市某學校數(shù)學單招試卷(含答案)學校:________班級:________姓名:________考號:________

一、單選題(10題)1.若a>b.則下列各式正確的是A.-a>-b

B.C.D.

2.同時擲兩枚質(zhì)地均勻的硬幣,則至少有一枚出現(xiàn)正面的概率是()A.lB.3/4C.1/2D.1/4

3.從1,2,3,4這4個數(shù)中任取兩個數(shù),則取出的兩數(shù)之和是奇數(shù)的概率是()A.1/5B.1/5C.2/5D.2/3

4.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(-∞,0)上單調(diào)遞增的是()A.f(x)=1/x2

B.f(x)=x2+1

C.f(x)=x3

D.f(x)-2-x

5.設(shè)f(x)是定義在R上的偶函數(shù),當x≤0時,f(x)=2x2-x,則f(-1)=()A.-3B.-1C.1D.3

6.A.B.C.D.

7.若tanα>0,則()A.sinα>0B.cosα>0C.sin2α>0D.cos2α>0

8.若向量A.(4,6)B.(-4,-6)C.(-2,-2)D.(2,2)

9.A.第一象限角B.第二象限角C.第三象限角D.第四象限角

10.若x2-ax+b<0的解集為(1,2),則a+b=()A.5B.-5C.1D.-1

二、填空題(10題)11.若長方體的長、寬、高分別為1,2,3,則其對角線長為

12.

13.若f(X)=,則f(2)=

。

14.若x<2,則_____.

15.1+3+5+…+(2n-b)=_____.

16.函數(shù)的定義域是_____.

17.五位同學站成一排,其中甲既不站在排頭也不站在排尾的排法有_____種.

18.

19.執(zhí)行如圖所示的流程圖,則輸出的k的值為_______.

20.已知圓柱的底面半徑為1,母線長與底面的直徑相等,則該圓柱的表面積為_____.

三、計算題(5題)21.有語文書3本,數(shù)學書4本,英語書5本,書都各不相同,要把這些書隨機排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語書不挨著排的概率P。

22.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。

23.某小組有6名男生與4名女生,任選3個人去參觀某展覽,求(1)3個人都是男生的概率;(2)至少有兩個男生的概率.

24.已知函數(shù)f(x)的定義域為{x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.

25.甲、乙兩人進行投籃訓練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.

四、證明題(5題)26.己知

a

=(-1,2),b

=(-2,1),證明:cos〈a,b〉=4/5.

27.△ABC的三邊分別為a,b,c,為且,求證∠C=

28.長、寬、高分別為3,4,5的長方體,沿相鄰面對角線截取一個三棱錐(如圖).求證:剩下幾何體的體積為三棱錐體積的5倍.

29.己知sin(θ+α)=sin(θ+β),求證:

30.如圖所示,四棱錐中P-ABCD,底面ABCD為矩形,點E為PB的中點.求證:PD//平面ACE.

五、簡答題(5題)31.已知函數(shù),且.(1)求a的值;(2)求f(x)函數(shù)的定義域及值域.

32.設(shè)函數(shù)是奇函數(shù)(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)當x<0時,判斷f(x)的單調(diào)性并加以證明.

33.在ABC中,AC丄BC,ABC=45°,D是BC上的點且ADC=60°,BD=20,求AC的長

34.已知拋物線的焦點到準線L的距離為2。(1)求拋物線的方程及焦點下的坐標。(2)過點P(4,0)的直線交拋物線AB兩點,求的值。

35.解不等式組

六、綜合題(5題)36.己知橢圓與拋物線y2=4x有共同的焦點F2,過橢圓的左焦點F1作傾斜角為的直線,與橢圓相交于M、N兩點.求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.

37.

38.在△ABC中,角A,B,C的對邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

39.己知點A(0,2),5(-2,-2).(1)求過A,B兩點的直線l的方程;(2)己知點A在橢圓C:上,且(1)中的直線l過橢圓C的左焦點。求橢圓C的標準方程.

40.

(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標軸相切的圓的標準方程.

參考答案

1.C

2.B獨立事件的概率.同時擲兩枚質(zhì)地均勻的硬幣,可能的結(jié)果:(正,正),(正,反),(反,正),(反,反)共4種結(jié)果,至少有一枚出現(xiàn)正面的結(jié)果有3種,所求的概率是3/4

3.D古典概型的概率.任意取到兩個數(shù)的方法有6種:1,2;1,3;1,4;2,3;2,4;3,4;,滿足題意的有4種:1,2;1,4;2,3;3,4;,則所求的概率為4/6=2/3

4.A函數(shù)的奇偶性,單調(diào)性.因為:y=x2在(-∞,0)上是單調(diào)遞減的,故y=1/x2在(-∞,0)上是單調(diào)遞增的,又y=1/x2為偶函數(shù),故A對;y=x2+1在(-∞,0)上是單調(diào)遞減的,故B錯;y=x3為奇函數(shù),故C錯;y=2-x為非奇非偶函數(shù),故D錯.

5.D函數(shù)奇偶性的應用.f(-1)=2(-1)2-(―1)=3.

6.D

7.C三角函數(shù)值的符號.由tanα>0,可得α的終邊在第一象限或第三象限,此時sinα與cosα同號,故sin2α=2sinαcosα>0

8.A向量的運算.=(l,2)+(3,4)=(4,6).

9.B

10.A一元二次不等式與一元二次方程的應用,根與系數(shù)的關(guān)系的應用問題.即方程x2-ax+b=0的兩根為1,2.由根與系數(shù)關(guān)系得解得a=3.所以a+b=5.

11.

,

12.0.4

13.00。將x=2代入f(x)得,f(2)=0。

14.-1,

15.n2,

16.{x|1<x<5且x≠2},

17.72,

18.-16

19.5程序框圖的運算.由題意,執(zhí)行程序框圖,可得k=1,S=1,S=3,k=2不滿足條件S>16,S=8,k=3不滿足條件S>16,S=16,k=4不滿足條件S>16,S=27,k=5滿足條件S>16,退出循環(huán),輸出k的值為5.故答案為:5.

20.6π圓柱的側(cè)面積計算公式.利用圓柱的側(cè)面積公式求解,該圓柱的側(cè)面積為27x1x2=4π,一個底面圓的面積是π,所以該圓柱的表面積為4π+27π=6π.

21.

22.

23.

24.

25.

26.

27.

28.證明:根據(jù)該幾何體的特征,可知所剩的幾何體的體積為長方體的體積減去所截的三棱錐的體積,即

29.

30.

∴PD//平面ACE.

31.(1)(2)

32.

∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴

∴得0<b<∵b∈Z∴b=1∴(2)設(shè)-1<<<0∵

若時

故當X<-1時為增函數(shù);當-1≤X<0為減函數(shù)

33.在指數(shù)△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20則,則

34.(1)拋物線焦點F(,0),準線L:x=-,∴焦點到準線的距離p=2∴拋物線的方程為y2=4x,焦點為F(1,0)(2)直線AB與x軸不平行,故可設(shè)它的方程為x=my+4,得y2-4m-16=0由設(shè)A(x1,x2),B(y1,y2),則y1y2=-16∴

35.x2-6x+8>0,∴x>4,x<2(1)(2)聯(lián)系(1)(2)得不等式組的解集為

36.

37.

38.

39.解:(1)直線l過A(0,2),B(-2,-2)兩點,根據(jù)斜率公式可得斜率因此直線l的方程為y-2=2x即2x-y+2=0⑵由⑴知,直線l的方程為2x-y+2=0,因此直線l與x軸的交點為(-1,0).又直線l過橢圓C的左焦點,故橢圓C的左焦點為(-1,0).設(shè)橢圓C的焦距為2c,則有c=1因為點A(0,2)在橢圓C:上所以b=2根據(jù)a2=b2+c2,有a=故橢圓C的標準方程為

40.解:(1)斜率k=5/3,設(shè)直線l的方程5x-3y+m=0,直線l經(jīng)過點(0,-8/3),所以m=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論