2022-2023學年內(nèi)蒙古鄂爾多斯市東勝區(qū)數(shù)學九上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2022-2023學年內(nèi)蒙古鄂爾多斯市東勝區(qū)數(shù)學九上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2022-2023學年內(nèi)蒙古鄂爾多斯市東勝區(qū)數(shù)學九上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2022-2023學年內(nèi)蒙古鄂爾多斯市東勝區(qū)數(shù)學九上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2022-2023學年內(nèi)蒙古鄂爾多斯市東勝區(qū)數(shù)學九上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列圖形中,既是軸對稱圖形,又是中心對稱圖形的個數(shù)有()A.1個 B.2個 C.3個 D.4個2.下列幾何體中,同一個幾何體的主視圖與左視圖不同的是()A. B. C. D.3.一個幾何體是由若干個相同的正方體組成的,其主視圖和左視圖如圖所示,則這個幾何體最多可由多少個這樣的正方體組成()A. B. C. D.4.如果反比例函數(shù)y=kx的圖像經(jīng)過點(-3,-A.第一、二象限 B.第一、三象限C.第二、四象限 D.第三、四象限5.有一副三角板,含45°的三角板的斜邊與含30°的三角板的長直角邊相等,如圖,將這副三角板直角頂點重合拼放在一起,點B,C,E在同一直線上,若BC=2,則AF的長為()A.2 B.2﹣2 C.4﹣2 D.2﹣6.按如下方法,將△ABC的三邊縮小到原來的,如圖,任取一點O,連結(jié)AO,BO,CO,并取它們的中點D、E、F,得△DEF;則下列說法錯誤的是()A.點O為位似中心且位似比為1:2B.△ABC與△DEF是位似圖形C.△ABC與△DEF是相似圖形D.△ABC與△DEF的面積之比為4:17.如圖,下列條件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD?AC D.8.若,,則的值為()A. B. C. D.9.如圖,將繞點,按逆時針方向旋轉(zhuǎn)120°,得到(點的對應點是點,點的對應點是點),連接.若,則的度數(shù)為()A.15° B.20° C.30° D.45°10.在△ABC中,∠C=90°,sinA=,則tanB等于()A. B.C. D.二、填空題(每小題3分,共24分)11.如圖,過上一點作的切線,與直徑的延長線交于點,若,則的度數(shù)為__________.12.已知cos(a-15°)=,那么a=____________13.如圖,某海防響所發(fā)現(xiàn)在它的西北方向,距離哨所400米的處有一般船向正東方向航行,航行一段時間后到達哨所北偏東方向的處,則此時這般船與哨所的距離約為________米.(精確到1米,參考數(shù)據(jù):,)14.二次函數(shù)的最大值是________.15.如圖,為半圓的直徑,點、、是半圓弧上的三個點,且,,若,,連接交于點,則的長是______.16.如圖,□中,,,的周長為25,則的周長為__________.17.一元二次方程的解為________.18.把一個小球以20米/秒的速度豎直向上彈出,它在空中的高度h(米)與時間t(秒),滿足關系:h=20t-5t2,當小球達到最高點時,小球的運動時間為第_________秒時.三、解答題(共66分)19.(10分)如圖,直線y=1x+1與y軸交于A點,與反比例函數(shù)y=(x>0)的圖象交于點M,過M作MH⊥x軸于點H,且tan∠AHO=1.(1)求H點的坐標及k的值;(1)點P在y軸上,使△AMP是以AM為腰的等腰三角形,請直接寫出所有滿足條件的P點坐標;(3)點N(a,1)是反比例函數(shù)y=(x>0)圖象上的點,點Q(m,0)是x軸上的動點,當△MNQ的面積為3時,請求出所有滿足條件的m的值.20.(6分)用“☆”定義一種新運算:對于任意有理數(shù)a和b,規(guī)定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(-2)☆3的值;(2)若=8,求a的值.21.(6分)(問題呈現(xiàn))阿基米德折弦定理:如圖1,AB和BC是⊙O的兩條弦(即折線ABC是圓的一條折弦),BC>AB,點M是的中點,則從M向BC所作垂線的垂足D是折弦ABC的中點,即CD=DB+BA.下面是運用“截長法”證明CD=DB+BA的部分證明過程.證明:如圖2,在CD上截取CG=AB,連接MA、MB、MC和MG.∵M是的中點,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵MD⊥BC∴BD=DG∴AB+BD=CG+DG即CD=DB+BA根據(jù)證明過程,分別寫出下列步驟的理由:①,②,③;(理解運用)如圖1,AB、BC是⊙O的兩條弦,AB=4,BC=6,點M是的中點,MD⊥BC于點D,則BD=;(變式探究)如圖3,若點M是的中點,(問題呈現(xiàn))中的其他條件不變,判斷CD、DB、BA之間存在怎樣的數(shù)量關系?并加以證明.(實踐應用)根據(jù)你對阿基米德折弦定理的理解完成下列問題:如圖4,BC是⊙O的直徑,點A圓上一定點,點D圓上一動點,且滿足∠DAC=45°,若AB=6,⊙O的半徑為5,求AD長.22.(8分)已知拋物線的頂點為,且過點.直線與軸相交于點.(1)求該拋物線的解析式;(2)以線段為直徑的圓與射線相交于點,求點的坐標.23.(8分)已知關于x的方程x2-6x+k=0的兩根分別是x1、x2.(1)求k的取值范圍;(2)當+=3時,求k的值.24.(8分)定義:有一組鄰邊相等的凸四邊形叫做“準菱形”,利用該定義完成以下各題:(1)理解:如圖1,在四邊形ABCD中,若__________(填一種情況),則四邊形ABCD是“準菱形”;(2)應用:證明:對角線相等且互相平分的“準菱形”是正方形;(請畫出圖形,寫出已知,求證并證明)(3)拓展:如圖2,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,將Rt△ABC沿∠ABC的平分線BP方向平移得到△DEF,連接AD,BF,若平移后的四邊形ABFD是“準菱形”,求線段BE的長.25.(10分)某型號飛機的機翼形狀如圖所示,已知所在直線互相平行且都與所在直線垂直,.,,,.求的長度(參考數(shù),,,,,)26.(10分)當時,求的值.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸,如果一個圖形繞某一點旋轉(zhuǎn)180°后能夠與自身重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.【詳解】(1)是軸對稱圖形,不是中心對稱圖形.不符合題意;(2)不是軸對稱圖形,是中心對稱圖形,不符合題意;(3)是軸對稱圖形,也是中心對稱圖形,符合題意;(4)是軸對稱圖形,也是中心對稱圖形,符合題意;故選:B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形關鍵是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖重合.2、A【分析】主視圖、左視圖、俯視圖是分別從正面、左側(cè)面、上面看,得到的圖形,根據(jù)要求判斷每個立體圖形對應視圖是否不同即可.【詳解】解:A.圓的主視圖是矩形,左視圖是圓,故兩個視圖不同,正確.B.正方體的主視圖與左視圖都是正方形,錯誤.C.圓錐的主視圖和俯視圖都是等腰三角形,錯誤.D.球的主視圖與左視圖都是圓,錯誤.故選:A【點睛】簡單幾何體的三視圖,此類型題主要看清題目要求,判斷的是哪種視圖即可.3、B【分析】易得此幾何體有三行,三列,判斷出各行各列最多有幾個正方體組成即可.【詳解】解:綜合主視圖與左視圖分析可知,第一行第1列最多有2個,第一行第2列最多有1個,第一行第3列最多有2個;第二行第1列最多有1個,第二行第2列最多有1個,第二行第3列最多有1個;第三行第1列最多有2個,第三行第2列最多有1個,第三行第3列最多有2個;所以最多有:2+1+2+1+1+1+2+1+2=13(個),故選B.【點睛】本題考查了幾何體三視圖,重點是考查學生的空間想象能力.掌握以下知識點:主視圖反映長和高,左視圖反映寬和高,俯視圖反映長和寬.4、B【解析】根據(jù)反比例函數(shù)圖象上點的坐標特點可得k=12,再根據(jù)反比例函數(shù)的性質(zhì)可得函數(shù)圖象位于第一、三象限.【詳解】∵反比例函數(shù)y=kx的圖象經(jīng)過點(-3,-4∴k=-3×(-4)=12,∵12>0,∴該函數(shù)圖象位于第一、三象限,故選:B.【點睛】此題主要考查了反比例函數(shù)的性質(zhì),關鍵是根據(jù)反比例函數(shù)圖象上點的坐標特點求出k的值.5、D【分析】根據(jù)正切的定義求出AC,根據(jù)正弦的定義求出CF,計算即可.【詳解】解:在Rt△ABC中,BC=2,∠A=30°,AC==2,則EF=AC=2,∵∠E=45°,∴FC=EF?sinE=,∴AF=AC﹣FC=2﹣,故選:D.【點睛】本題考查的是特殊角的三角函數(shù)值的應用,掌握銳角三角函數(shù)的概念、熟記特殊角的三角函數(shù)值是解題的關鍵.6、A【分析】根據(jù)位似圖形的性質(zhì),得出①△ABC與△DEF是位似圖形進而根據(jù)位似圖形一定是相似圖形得出②△ABC與△DEF是相似圖形,再根據(jù)周長比等于位似比,以及根據(jù)面積比等于相似比的平方,即可得出答案.【詳解】∵如圖,任取一點O,連結(jié)AO,BO,CO,并取它們的中點D、E、F,得△DEF,∴將△ABC的三邊縮小到原來的,此時點O為位似中心且△ABC與△DEF的位似比為2:1,故選項A說法錯誤,符合題意;△ABC與△DEF是位似圖形,故選項B說法正確,不合題意;△ABC與△DEF是相似圖形,故選項C說法正確,不合題意;△ABC與△DEF的面積之比為4:1,故選項D說法正確,不合題意;故選:A.【點睛】此題主要考查了位似圖形的性質(zhì),正確的記憶位似圖形性質(zhì)是解決問題的關鍵.7、D【分析】根據(jù)有兩個角對應相等的三角形相似,以及根據(jù)兩邊對應成比例且夾角相等的兩個三角形相似,分別判斷得出即可.【詳解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此選項不合題意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此選項不合題意;C、∵AB2=AD?AC,∴,∠A=∠A,△ABC∽△ADB,故此選項不合題意;D、=不能判定△ADB∽△ABC,故此選項符合題意.故選D.【點睛】點評:本題考查了相似三角形的判定,利用了有兩個角對應相等的三角形相似,兩邊對應成比例且夾角相等的兩個三角形相似.8、D【分析】先利用平方差公式得到=(a+b)(a-b),再把,整體代入即可.【詳解】解:=(a+b)(a-b)==.故答案為D.【點睛】本題考查了平方差公式,把a+b和a-b看成一個整體是解題的關鍵.9、C【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠BAB′=∠CAC′=120°,AB=AB′,根據(jù)等腰三角形的性質(zhì)易得∠AB′B=30°,再根據(jù)平行線的性質(zhì)即可得∠C′AB′=∠AB′B=30°.【詳解】解:∵將△ABC繞點A按逆時針方向旋轉(zhuǎn)l20°得到△AB′C′,

∴∠BAB′=∠CAC′=120°,AB=AB′,

∴∠AB′B=(180°-120°)=30°,

∵AC′∥BB′,

∴∠C′AB′=∠AB′B=30°,

∴∠CAB=∠C′AB′=30°,

故選:C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等;對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.10、B【解析】法一,依題意△ABC為直角三角形,∴∠A+∠B=90°,∴cosB=,∵,∴sinB=,∵tanB==故選B法2,依題意可設a=4,b=3,則c=5,∵tanb=故選B二、填空題(每小題3分,共24分)11、26°【分析】連接OC,利用切線的性質(zhì)可求得∠COD的度數(shù),然后利用圓周角定理可得出答案.【詳解】解:連接OC,

∵CD與⊙O相切于點D,與直徑AB的延長線交于點D,

∴∠DCO=90°,

∵∠D=38°,

∴∠COD=52°,

∴∠E=∠COD=26°,

故答案為:26°.【點睛】此題考查切線的性質(zhì)以及圓周角定理,關鍵是通過連接半徑構造直角三角形求出∠COD的度數(shù).12、45°【分析】由題意直接利用特殊角的三角函數(shù)值,進行分析計算進而得出答案.【詳解】解:∵,∴a-15°=30°,∴a=45°.故答案為:45°.【點睛】本題主要考查特殊角的三角函數(shù)值,牢記是特殊角的三角函數(shù)值解題的關鍵.13、566【分析】通過解直角△OAC求得OC的長度,然后通過解直角△OBC求得OB的長度即可.【詳解】設與正北方向線相交于點,根據(jù)題意,所以,在中,因為,所以,中,因為,所以(米).故答案為566.【點睛】考查了解直角三角形的應用-方向角的問題.此題是一道方向角問題,結(jié)合航海中的實際問題,將解直角三角形的相關知識有機結(jié)合,體現(xiàn)了數(shù)學應用于實際生活的思想.14、1【分析】題目所給形式是二次函數(shù)的頂點式,易知其頂點坐標是(5,1),也就是當x=5時,函數(shù)有最大值1.【詳解】解:∵,∴此函數(shù)的頂點坐標是(5,1).即當x=5時,函數(shù)有最大值1.故答案是:1.【點睛】本題考查了二次函數(shù)的最值,解題關鍵是掌握二次函數(shù)頂點式,并會根據(jù)頂點式求最值.15、【分析】連接OC,根據(jù)菱形的判定,可得四邊形AODC為菱形,從而得出AC=OD,根據(jù)圓的性質(zhì)可得OE=OC=AC=OA=,從而得出△AOC為等邊三角形,然后根據(jù)同弧所對的圓周角是圓心角的一半,可求得∠EOC,從而得出OE平分∠AOC,根據(jù)三線合一和銳角三角函數(shù)即可求出OF,從而求出EF.【詳解】解:連接OC∵,,OA=OD∴四邊形AODC為菱形∴AC=OD∵∴OE=OC=AC=OA=∴△AOC為等邊三角形∴∠AOC=60°∵∴∠EOC=2∴OE平分∠AOC∴OE⊥AC在Rt△OFC中,cos∠EOC=∴∴EF=OE-OF=故答案為:.【點睛】此題考查的是菱形的判定及性質(zhì)、圓的基本性質(zhì)、等邊三角形的判定及性質(zhì)和解直角三角形,掌握菱形的判定及性質(zhì)、同弧所對的圓周角是圓心角的一半、等邊三角形的判定及性質(zhì)和用銳角三角函數(shù)解直角三角形是解決此題的關鍵.16、2【分析】根據(jù)平行四邊形的性質(zhì)可得出△ABD≌CDB,求得△ABD的周長,利用三角形相似的性質(zhì)即可求得△DEF的周長.【詳解】解:∵EF∥AB,DE:AE=2:3,

∴△DEF∽△DAB,,∴△DEF與△ABD的周長之比為2:1.

又∵四邊形ABCD是平行四邊形,

∴AB=CD,AD=BC,BD=DB,

∴△ABD≌△CDB(SSS),又△BDC的周長為21,∴△ABD的周長為21,

∴△DEF的周長為2,

故答案為:2.【點睛】本題考查了相似三角形的判定與性質(zhì),理解相似三角形的周長比與相似比的關系是解題的關鍵.17、,【解析】利用“十字相乘法”對等式的左邊進行因式分解.【詳解】由原方程,得,則或,解得,.故答案為:,.【點睛】本題考查了解一元二次方程-因式分解法.因式分解法就是先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉(zhuǎn)化為解一元一次方程的問題了(數(shù)學轉(zhuǎn)化思想).18、1【解析】h=10t-5t1=-5(t-1)1+10,∵-5<0,∴函數(shù)有最大值,則當t=1時,球的高度最高.故答案為1.三、解答題(共66分)19、(1)k=4;(1)點P的坐標為(0,6)或(0,1+),或(0,1﹣);(2)m=7或2.【解析】(1)先求出OA=1,結(jié)合tan∠AHO=1可得OH的長,即可得知點M的橫坐標,代入直線解析式可得點M坐標,代入反比例解析式可得k的值;

(1)分AM=AP和AM=PM兩種情況分別求解可得;

(2)先求出點N(4,1),延長MN交x軸于點C,待定系數(shù)法求出直線MN解析式為y=-x+3.據(jù)此求得OC=3,再由S△MNQ=S△MQC-S△NQC=2知QC=1,再進一步求解可得.【詳解】(1)由y=1x+1可知A(0,1),即OA=1,∵tan∠AHO=1,∴OH=1,∴H(1,0),∵MH⊥x軸,∴點M的橫坐標為1,∵點M在直線y=1x+1上,∴點M的縱坐標為4,即M(1,4),∵點M在y=上,∴k=1×4=4;(1)①當AM=AP時,∵A(0,1),M(1,4),∴AM=,則AP=AM=,∴此時點P的坐標為(0,1﹣)或(0,1+);②若AM=PM時,設P(0,y),則PM=,∴=,解得y=1(舍)或y=6,此時點P的坐標為(0,6),綜上所述,點P的坐標為(0,6)或(0,1+),或(0,1﹣);(2)∵點N(a,1)在反比例函數(shù)y=(x>0)圖象上,∴a=4,∴點N(4,1),延長MN交x軸于點C,設直線MN的解析式為y=mx+n,則有解得,∴直線MN的解析式為y=﹣x+3.∵點C是直線y=﹣x+3與x軸的交點,∴點C的坐標為(3,0),OC=3,∵S△MNQ=2,∴S△MNQ=S△MQC﹣S△NQC=×QC×4﹣×QC×1=QC=2,∴QC=1,∵C(3,0),Q(m,0),∴|m﹣3|=1,∴m=7或2,故答案為7或2.【點睛】本題是反比例函數(shù)綜合問題,解題的關鍵是掌握待定系數(shù)法求一次函數(shù)和反比例函數(shù)解析式、等腰三角形的判定與性質(zhì)、兩點之間的距離公式及三角形的面積計算.20、(1)-32;(2)a=1.【解析】分析:(1)原式利用題中的新定義化簡,計算即可得到結(jié)果;(2)已知等式利用題中的新定義化簡,即可求出a的值.詳解:(1)(-2)☆3=-2×32+2×(-2)×3+(-2)=-32;(2)==8a+8=8,解得:a=1.點睛:此題考查了有理數(shù)的混合運算,熟練掌握運算法則是解本題的關鍵.21、(問題呈現(xiàn))相等的弧所對的弦相等;同弧所對的圓周角相等;有兩組邊及其夾角分別對應相等的兩個三角形全等;(理解運用)1;(變式探究)DB=CD+BA;證明見解析;(實踐應用)1或.【分析】(問題呈現(xiàn))根據(jù)圓的性質(zhì)即可求解;(理解運用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,即可求解;(變式探究)證明△MAB≌△MGB(SAS),則MA=MG,MC=MG,又DM⊥BC,則DC=DG,即可求解;(實踐應用)已知∠D1AC=45°,過點D1作D1G1⊥AC于點G1,則CG1′+AB=AG1,所以AG1=(6+2)=1.如圖∠D2AC=45°,同理易得AD2=.【詳解】(問題呈現(xiàn))①相等的弧所對的弦相等②同弧所對的圓周角相等③有兩組邊及其夾角分別對應相等的兩個三角形全等故答案為:相等的弧所對的弦相等;同弧所定義的圓周角相等;有兩組邊及其夾角分別對應相等的兩個三角形全等;(理解運用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,BD=BC﹣CD=6﹣5=1,故答案為:1;(變式探究)DB=CD+BA.證明:在DB上截去BG=BA,連接MA、MB、MC、MG,∵M是弧AC的中點,∴AM=MC,∠MBA=∠MBG.又MB=MB∴△MAB≌△MGB(SAS)∴MA=MG∴MC=MG,又DM⊥BC,∴DC=DG,AB+DC=BG+DG,即DB=CD+BA;(實踐應用)如圖,BC是圓的直徑,所以∠BAC=90°.因為AB=6,圓的半徑為5,所以AC=2.已知∠D1AC=45°,過點D1作D1G1⊥AC于點G1,則CG1′+AB=AG1,所以AG1=(6+2)=1.所以AD1=1.如圖∠D2AC=45°,同理易得AD2=.所以AD的長為1或.【點睛】本題考查全等三角形的判定(SAS)與性質(zhì)、等腰三角形的性質(zhì)和圓心角、弦、弧,解題的關鍵是掌握全等三角形的判定(SAS)與性質(zhì)、等腰三角形的性質(zhì)和圓心角、弦、弧.22、(1);(2)或【分析】(1)先設出拋物線的頂點式,再將點A的坐標代入可得出結(jié)果;(2)先求出射線的解析式為,可設點P的坐標為(x,x).圓與射線OA相交于兩點,分兩種情況:①如圖1當時,構造和,再在直角三角形中利用勾股定理,列方程求解;②如圖2,當時,構造和,再在直角三角形中利用勾股定理,列方程求解.【詳解】解:(1)根據(jù)頂點設拋物線的解析式為:,代入點,得:,拋物線的解析式為:.設直線的解析式為:,分別代入和,得:,直線的解析式為:;(2)由(1)得:直線的解析式為,令,得,由題意可得射線的解析式為,點在射線上,則可設點,由圖可知滿足條件的點有兩個:①當時,構造和,可得:如圖1:由圖可得,,,.在Rt△PMD中,,在Rt△PBG中,,在Rt△BMH中,,點在以線段為直徑的圓上,,可得:,即:.整理,得:,解得:;,.;②當時,如圖2,構造和,可得:同理,根據(jù)BM2=BP2+PM2,可得方程:42+42=(6-x)2+x2+(x-2)2+(x-4)2,化簡得,,解得:,∵..綜上所述,符合題目條件的點有兩個,其坐標分別為:或.【點睛】本題主要考查二次函數(shù)解析式的求法,以及圓的相關性質(zhì),關鍵是構造直角三角形利用勾股定理列方程解決問題.23、(1)k≤9;(2)2【分析】(1)根據(jù)判別式的意義得到Δ=(-6)2-4k=36-4k≥0,然后解不等式即可;(2)根據(jù)根與系數(shù)的關系得到x1+x2=6,x1x2=k,再利用=3得到=3,得到滿足條件的k的值.【詳解】(1)∵方程有兩根∴Δ=(-6)2-4k=36-4k≥0∴k≤9;(2)由已知可得,x1+x2=6

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論