數(shù)學學業(yè)水平知識點_第1頁
數(shù)學學業(yè)水平知識點_第2頁
數(shù)學學業(yè)水平知識點_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

數(shù)學學業(yè)程度知識點因為高中開場努力,所以前面的知識肯定有一定的欠缺,這就要求自己要制定一定的方案,更要比別人付出更多的努力,相信付出的汗水不會白白流淌的,收獲總是自己的。嘔心瀝血搜集整理的數(shù)學學業(yè)程度知識點,下面就帶大家分享展示一下!!!

數(shù)學學業(yè)程度知識點1

考點一、映射的概念

1.理解對應(yīng)大千世界的對應(yīng)共分四類,分別是:一對一多對一一對多多對多

2.映射:設(shè)A和B是兩個非空集合,假如按照某種對應(yīng)關(guān)系f,對于集合A中的任意一個元素x,在集合B中都存在的一個元素y與之對應(yīng),那么,就稱對應(yīng)f:A→B為集合A到集合B的一個映射(mapping).映射是特殊的對應(yīng),簡稱“對一〞的對應(yīng)。包括:一對一多對一

考點二、函數(shù)的概念

1.函數(shù):設(shè)A和B是兩個非空的數(shù)集,假如按照某種確定的對應(yīng)關(guān)系f,對于集合A中的任意一個數(shù)x,在集合B中都存在確定的數(shù)y與之對應(yīng),那么,就稱對應(yīng)f:A→B為集合A到集合B的一個函數(shù)。記作y=f(x),xA.其中x叫自變量,x的取值范圍A叫函數(shù)的定義域;與x的值相對應(yīng)的y的值函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域。函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射。

2.函數(shù)的三要素:定義域、值域、對應(yīng)關(guān)系。這是判斷兩個函數(shù)是否為同一函數(shù)的根據(jù)。

3.區(qū)間的概念:設(shè)a,bR,且a

①(a,b)={xa

⑤(a,+∞)={>a}⑥[a,+∞)={≥a}⑦(-∞,b)={

考點三、函數(shù)的表示方法

1.函數(shù)的三種表示方法列表法圖象法解析法

2.分段函數(shù):定義域的不同部分,有不同的對應(yīng)法那么的函數(shù)。注意兩點:①分段函數(shù)是一個函數(shù),不要誤認為是幾個函數(shù)。②分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集。

考點四、求定義域的幾種情況

①假設(shè)f(x)是整式,那么函數(shù)的定義域是實數(shù)集R;

②假設(shè)f(x)是分式,那么函數(shù)的定義域是使分母不等于0的實數(shù)集;

③假設(shè)f(x)是二次根式,那么函數(shù)的定義域是使根號內(nèi)的式子大于或等于0的實數(shù)集合;

④假設(shè)f(x)是對數(shù)函數(shù),真數(shù)應(yīng)大于零。

⑤.因為零的零次冪沒有意義,所以底數(shù)和指數(shù)不能同時為零。

⑥假設(shè)f(x)是由幾個部分的數(shù)學式子構(gòu)成的,那么函數(shù)的定義域是使各部分式子都有意義的實數(shù)集合;

⑦假設(shè)f(x)是由實際問題抽象出來的函數(shù),那么函數(shù)的定義域應(yīng)符合實際問題

數(shù)學學業(yè)程度知識點2

1.求函數(shù)的單調(diào)性:

利用導(dǎo)數(shù)求函數(shù)單調(diào)性的根本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)假如恒f(x)0,那么函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)假如恒f(x)0,那么函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)假如恒f(x)0,那么函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。

利用導(dǎo)數(shù)求函數(shù)單調(diào)性的根本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不連續(xù)區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不連續(xù)區(qū)間為減區(qū)間。

反過來,也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),

(1)假如函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),那么f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

(2)假如函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),那么f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

(3)假如函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),那么f(x)0恒成立。

2.求函數(shù)的極值:

設(shè)函數(shù)yf(x)在x0及其附近有定義,假如對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),那么稱f(x0)是函數(shù)f(x)的極小值(或極大值)。

可導(dǎo)函數(shù)的極值,可通過研究函數(shù)的單調(diào)性求得,根本步驟是:

(1)確定函數(shù)f(x)的定義域;(2)求導(dǎo)數(shù)f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成假設(shè)干個小區(qū)間,并列表:x變化時,f(x)和f(x)值的變化情況:

(4)檢查f(x)的符號并由表格判斷極值。

3.求函數(shù)的值與最小值:

假如函數(shù)f(x)在定義域I內(nèi)存在x0,使得對任意的xI,總有f(x)f(x0),那么稱f(x0)為函數(shù)在定義域上的值。函數(shù)在定義域內(nèi)的極值不一定,但在定義域內(nèi)的最值是的。

求函數(shù)f(x)在區(qū)間[a,b]上的值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;

(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的值與最小值。

4.解決不等式的有關(guān)問題:

(1)不等式恒成立問題(絕對不等式問題)可考慮值域。

f(x)(xA)的值域是[a,b]時,

不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

不等式f(x)0恒成立的充要條件是f(x)min0,即a0。

f(x)(xA)的值域是(a,b)時,

不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。

(2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0。

5.導(dǎo)數(shù)在實際生活中的應(yīng)用:

實際生活求解(小)值問題,通常都可轉(zhuǎn)化為函數(shù)的最值.在利用導(dǎo)數(shù)來求函數(shù)最值時,一定要注意,極值點的單峰函數(shù),極值點就是最值點,在解題時要加以說明。

數(shù)學學業(yè)程度知識點3

1.定義法:

判斷B是A的條件,實際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫出箭頭示意圖,再利用定義判斷即可。

2.轉(zhuǎn)換法:

當所給命題的充要條件不易判斷時,可對命題進展等價裝換,例如改用其逆否命題進展判斷。

3.集合法

在命題的條件和結(jié)論間的關(guān)系判斷有困難時,可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論