廣東省佛山市南海實驗中學2022年數(shù)學九年級上冊期末調(diào)研模擬試題含解析_第1頁
廣東省佛山市南海實驗中學2022年數(shù)學九年級上冊期末調(diào)研模擬試題含解析_第2頁
廣東省佛山市南海實驗中學2022年數(shù)學九年級上冊期末調(diào)研模擬試題含解析_第3頁
廣東省佛山市南海實驗中學2022年數(shù)學九年級上冊期末調(diào)研模擬試題含解析_第4頁
廣東省佛山市南海實驗中學2022年數(shù)學九年級上冊期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖所示,河堤橫斷面迎水坡AB的坡比是1:,堤高BC=5m,則坡面AB的長度是()A.10m B.10m C.15m D.5m2.下列方程沒有實數(shù)根的是()A.x2﹣x﹣1=0 B.x2﹣6x+5=0 C.x2﹣2x+3=0 D.x2+x+1=03.下列計算正確的是()A. B.C. D.4.如圖,PA,PB切⊙O于點A,B,點C是⊙O上一點,且∠P=36°,則∠ACB=()A.54° B.72° C.108° D.144°5.某次數(shù)學糾錯比賽共有道題目,每道題都答對得分,答錯或不答得分,全班名同學參加了此次競賽,他們的得分情況如下表所示:成績(分)人數(shù)則全班名同學的成績的中位數(shù)和眾數(shù)分別是()A., B., C.,70 D.,6.若點在反比例函數(shù)的圖象上,且,則下列各式正確的是()A. B. C. D.7.如圖,點P是菱形ABCD的對角線AC上的一個動點,過點P垂直于AC的直線交菱形ABCD的邊于M、N兩點.設AC=2,BD=1,AP=x,△AMN的面積為y,則y關于x的函數(shù)圖象大致形狀是()A. B. C. D.8.下列式子中最簡二次根式是()A. B. C. D.9.如圖,是矩形內(nèi)的任意一點,連接、、、,得到,,,,設它們的面積分別是,,,,給出如下結論:①②③若,則④若,則點在矩形的對角線上.其中正確的結論的序號是()A.①② B.②③ C.③④ D.②④10.如圖,點A、B、C在⊙O上,∠A=50°,則∠BOC的度數(shù)為()A.130° B.50° C.65° D.100°二、填空題(每小題3分,共24分)11.把兩塊同樣大小的含角的三角板的直角重合并按圖1方式放置,點是兩塊三角板的邊與的交點,將三角板繞點按順時針方向旋轉(zhuǎn)到圖2的位置,若,則點所走過的路程是_________.12.如圖,二次函數(shù)的圖象記為,它與軸交于點,;將繞點旋轉(zhuǎn)180°得,交軸于點;將繞點旋轉(zhuǎn)180°得,交軸于點;……如此進行下去,得到一條“波浪線”.若在這條“波浪線”上,則____.13.如圖,在平行四邊形中,點在邊上,,連接交于點,則的面積與四邊形的面積之比為___14.如圖:點是圓外任意一點,連接、,則______(填“>”、“<”或“=”)15.⊙O的半徑為10cm,點P到圓心O的距離為12cm,則點P和⊙O的位置關系是_____.16.計算:﹣(﹣π)0+()﹣1=_____.17.如圖,已知AB⊥BD,ED⊥BD,C是線段BD的中點,且AC⊥CE,ED=1,BD=4,那么AB=.18.如圖,已知PA,PB是⊙O的兩條切線,A,B為切點.C是⊙O上一個動點.且不與A,B重合.若∠PAC=α,∠ABC=β,則α與β的關系是_______.三、解答題(共66分)19.(10分)(1)如圖1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的長.(2)如圖2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的長.20.(6分)如圖,在⊙O中,點C是的中點,弦AB與半徑OC相交于點D,AB=11,CD=1.求⊙O半徑的長.21.(6分)如圖,在每個小正方形的邊長均為1的方格紙中,線段的端點、均在小正方形的頂點上.(1)在方格紙中畫出以為一條直角邊的等腰直角,頂點在小正方形的頂點上.(2)在方格紙中畫出的中線,將線段繞點順時針旋轉(zhuǎn)得到線段,畫出旋轉(zhuǎn)后的線段,連接,直接寫出四邊形的面積.22.(8分)如圖,是我市某大樓的高,在地面上點處測得樓頂?shù)难鼋菫椋胤较蚯斑M米到達點,測得.現(xiàn)打算從大樓頂端點懸掛一幅慶祝建國周年的大型標語,若標語底端距地面,請你計算標語的長度應為多少?23.(8分)某區(qū)各街道居民積極響應“創(chuàng)文明社區(qū)”活動,據(jù)了解,某街道居民人口共有7.5萬人,街道劃分為A,B兩個社區(qū),B社區(qū)居民人口數(shù)量不超過A社區(qū)居民人口數(shù)量的2倍.(1)求A社區(qū)居民人口至少有多少萬人?(2)街道工作人員調(diào)查A,B兩個社區(qū)居民對“社會主義核心價值觀”知曉情況發(fā)現(xiàn):A社區(qū)有1.2萬人知曉,B社區(qū)有1萬人知曉,為了提高知曉率,街道工作人員用了兩個月的時間加強宣傳,A社區(qū)的知曉人數(shù)平均月增長率為m%,B社區(qū)的知曉人數(shù)第一個月增長了m%,第二個月增長了2m%,兩個月后,街道居民的知曉率達到76%,求m的值.24.(8分)如圖,在中,,,,動點從點出發(fā),沿方向勻速運動,速度為;同時,動點從點出發(fā),沿方向勻速運動,速度為;當一個點停止運動,另一個點也停止運動.設點,運動的時間是.過點作于點,連接,.(1)為何值時,?(2)設四邊形的面積為,試求出與之間的關系式;(3)是否存在某一時刻,使得若存在,求出的值;若不存在,請說明理由;(4)當為何值時,?25.(10分)為了了解班級學生數(shù)學課前預習的具體情況,鄭老師對本班部分學生進行了為期一個月的跟蹤調(diào)查,他將調(diào)查結果分為四類:A:很好;B:較好;C:一般;D:不達標,并將調(diào)查結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:(1)C類女生有名,D類男生有名,將上面條形統(tǒng)計圖補充完整;(2)扇形統(tǒng)計圖中“課前預習不達標”對應的圓心角度數(shù)是;(3)為了共同進步,鄭老師想從被調(diào)查的A類和D類學生中各隨機機抽取一位同學進行“一幫一”互助學習,請用畫樹狀圖或列表的方法求出所選兩位同學恰好是一男一女同學的概率,26.(10分)如圖,是的直徑,為上一點,于點,交于點,與交于點為延長線上一點,且.(1)求證:是的切線;(2)求證:;(3)若,求的長.

參考答案一、選擇題(每小題3分,共30分)1、A【解析】試題分析:河堤橫斷面迎水坡AB的坡比是,即,∴∠BAC=30°,∴AB=2BC=2×5=10,故選A.考點:解直角三角形2、D【解析】首先根據(jù)題意判斷上述四個方程的根的情況,只要看根的判別式△=-4ac的值的符號即可.【詳解】解:A、∵△=b2﹣4ac=1+4=5>0,∴方程有兩個不相等的實數(shù)根,故本選項錯誤;B、∵△=b2﹣4ac=36﹣20=16>0,∴方程有兩個不相等的實數(shù)根,故本選項錯誤;C、∵△=b2﹣4ac=12﹣12=0,∴方程有兩個相等的實數(shù)根,故本選項錯誤;D、∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程沒有實數(shù)根,故本選項正確.故選:D.【點睛】本題考查根的判別式.一元二次方程的根與△=-4ac有如下關系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.3、C【分析】分別根據(jù)合并同類項的法則、完全平方公式、冪的乘方以及同底數(shù)冪的乘法化簡即可判斷.【詳解】A、,故選項A不合題意;B.,故選項B不合題意;C.,故選項C符合題意;D.,故選項D不合題意,故選C.【點睛】本題考查了合并同類項、冪的運算以及完全平方公式,熟練掌握各運算的運算法則是解答本題的關鍵.4、B【解析】連接AO,BO,∠P=36°,所以∠AOB=144°,所以∠ACB=72°.故選B.5、A【分析】根據(jù)中位數(shù)的定義把這組數(shù)據(jù)從小到大排列,求出最中間2個數(shù)的平均數(shù);根據(jù)眾數(shù)的定義找出出現(xiàn)次數(shù)最多的數(shù)即可.【詳解】把這組數(shù)據(jù)從小到大排列,最中間2個數(shù)的平均數(shù)是(70+80)÷2=75;

則中位數(shù)是75;

70出現(xiàn)了13次,出現(xiàn)的次數(shù)最多,則眾數(shù)是70;

故選:A.【點睛】本題考查了眾數(shù)和中位數(shù),中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),注意眾數(shù)不止一個.6、C【分析】先判斷反比例函數(shù)所在象限,再根據(jù)反比例函數(shù)的性質(zhì)解答即可.【詳解】解:反比例函數(shù)為,函數(shù)圖象在第二、四象限,在每個象限內(nèi),隨著的增大而增大,又,,,.故選C.【點睛】本題考查了反比例函數(shù)的圖象和性質(zhì),屬于基本題型,熟練掌握反比例函數(shù)的性質(zhì)是解答的關鍵.7、C【解析】△AMN的面積=AP×MN,通過題干已知條件,用x分別表示出AP、MN,根據(jù)所得的函數(shù),利用其圖象,可分兩種情況解答:(1)0<x≤1;(2)1<x<2;解:(1)當0<x≤1時,如圖,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函數(shù)圖象開口向上;(2)當1<x<2,如圖,同理證得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函數(shù)圖象開口向下;綜上答案C的圖象大致符合.故選C.本題考查了二次函數(shù)的圖象,考查了學生從圖象中讀取信息的數(shù)形結合能力,體現(xiàn)了分類討論的思想.8、A【解析】根據(jù)最簡二次根式的定義:被開方數(shù)是整數(shù)或整式,且不含開得盡方的因數(shù)或因式進行判斷即可.【詳解】A.是最簡二次根式,符合題意;B.,不是最簡二次根式,不符合題意;C.被開方數(shù)是分數(shù),不是最簡二次根式,不符合題意;D.被開方數(shù)是分數(shù),不是最簡二次根式,不符合題意;故選A.【點睛】本題考查最簡二次根式,熟練掌握最簡二次根式的定義是解題的關鍵.9、D【分析】根據(jù)三角形面積公式、矩形性質(zhì)及相似多邊形的性質(zhì)得出:①矩形對角線平分矩形,S△ABD=S△BCD,只有P點在BD上時,S?+S?=S?+S4;②根據(jù)底邊相等的兩個三角形的面積公式求和可知,S?+S?=矩形ABCD面積,同理S?+S4=矩形ABCD面積,所以S?+S?=S?+S4;③根據(jù)底邊相等高不相等的三角形面積比等于高的比來說明即可;④根據(jù)相似四邊形判定和性質(zhì),對應角相等、對應邊成比例的四邊形相似,矩形AEPF∽矩形ABCD推出,點P在對角線上.【詳解】解:①當點P在矩形的對角線BD上時,S?+S?=S?+S4.但P是矩形ABCD內(nèi)的任意一點,所以該等式不一定成立。故①不一定正確;②∵矩形∴AB=CD,AD=BC∵△APD以AD為底邊,△PBC以BC為底邊,這兩三角形的底相等,高的和為AB,∴S?+S?=S矩形ABCD;同理可得S?+S4=S矩形ABCD,∴②S?+S4=S?+S?正確;③若S?=2S?,只能得出△APD與△PBC高度之比是,S?、S4分別是以AB、CD為底的三角形的面積,底相等,高的比不一定等于,S4=2S2不一定正確;故此選項錯誤;④過點P分別作PF⊥AD于點F,PE⊥AB于點E,F.若S1=S2,.則AD·PF=AB·PE∴△APD與△PAB的高的比為:∵∠DAE=∠PEA=∠PFA=90°∴四邊形AEPF是矩形,∴矩形AEPF∽矩形ABCD∴∴P點在矩形的對角線上,選項④正確.故選:D【點睛】本題考查了三角形面積公式的應用,相似多邊形的判定和性質(zhì),用相似多邊形性質(zhì)對應邊成比例是解決本題的難點.10、D【解析】根據(jù)圓周角定理求解即可.【詳解】解:∵∠A=50°,∴∠BOC=2∠A=100°.故選D.【點睛】考查了圓周角定理的運用.圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.二、填空題(每小題3分,共24分)11、【分析】兩塊三角板的邊與的交點所走過的路程,需分類討論,由圖①的點運動到圖②的點,由圖②的點運動到圖③的點,總路程為,分別求解即可.【詳解】如圖,兩塊三角板的邊與的交點所走過的路程,分兩步走:(1)由圖①的點運動到圖②的點,此時:AC⊥DE,點C到直線DE的距離最短,所以CF最短,則PF最長,根據(jù)題意,,,在中,∴;(2)由圖②的點運動到圖③的點,過G作GH⊥DC于H,如下圖,∵,且GH⊥DC,∴是等腰直角三角形,∴,設,則,∴,∴,解得:,即,點所走過的路程:,故答案為:【點睛】本題是一道需要把旋轉(zhuǎn)角的概念和解直角三角形相結合求解的綜合題,考查學生綜合運用數(shù)學知識的能力.正確確定點所走過的路程是解答本題的關鍵.12、1【分析】根據(jù)拋物線與x軸的交點問題,得到圖象C1與x軸交點坐標為:(1,1),(2,1),再利用旋轉(zhuǎn)的性質(zhì)得到圖象C2與x軸交點坐標為:(2,1),(4,1),則拋物線C2:y=(x-2)(x-4)(2≤x≤4),于是可推出橫坐標x為偶數(shù)時,縱坐標為1,橫坐標是奇數(shù)時,縱坐標為1或-1,由此即可解決問題.【詳解】解:∵一段拋物線C1:y=-x(x-2)(1≤x≤2),

∴圖象C1與x軸交點坐標為:(1,1),(2,1),

∵將C1繞點A1旋轉(zhuǎn)181°得C2,交x軸于點A2;,

∴拋物線C2:y=(x-2)(x-4)(2≤x≤4),

將C2繞點A2旋轉(zhuǎn)181°得C3,交x軸于點A3;

∴P(2121,m)在拋物線C1111上,

∵2121是偶數(shù),

∴m=1,故答案為1.【點睛】本題考查了二次函數(shù)與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.13、【分析】由DE:EC=3:1,可得DF:FB=3:4,根據(jù)在高相等的情況下三角形面積比等于底邊的比,可得S△EFD:S△BEF=3:4,S△BDE:S△BEC=3:1,可求△DEF的面積與四邊形BCEF的面積的比值.【詳解】解:連接BE

∵DE:EC=3:1

∴設DE=3k,EC=k,則CD=4k

∵ABCD是平行四邊形

∴AB∥CD,AB=CD=4k,∴,∴S△EFD:S△BEF=3:4

∵DE:EC=3:1

∴S△BDE:S△BEC=3:1

設S△BDE=3a,S△BEC=a

則S△EFD=,,S△BEF=,∴SBCEF=S△BEC+S△BEF=,∴則△DEF的面積與四邊形BCEF的面積之比9:19

故答案為:.【點睛】本題考查了平行線分線段成比例,平行四邊形的性質(zhì),關鍵是運用在高相等的情況下三角形面積比等于底邊的比求三角形的面積比值.14、<【分析】設BP與圓交于點D,連接AD,根據(jù)同弧所對的圓周角相等,可得∠ACB=∠ADB,然后根據(jù)三角形外角的性質(zhì)即可判斷.【詳解】解:設BP與圓交于點D,連接AD∴∠ACB=∠ADB∵∠ADB是△APD的外角∴∠ADB>∴<∠ACB故答案為:<.【點睛】此題考查的是圓周角定理的推論和三角形外角的性質(zhì),掌握同弧所對的圓周角相等和三角形的外角大于任何一個與它不相鄰的內(nèi)角是解決此題的關鍵.15、點P在⊙O外【分析】根據(jù)點與圓心的距離d,則d>r時,點在圓外;當d=r時,點在圓上;當d<r時,點在圓內(nèi).【詳解】解:∵⊙O的半徑r=10cm,點P到圓心O的距離OP=12cm,∴OP>r,∴點P在⊙O外,故答案為點P在⊙O外.【點睛】本題考查了對點與圓的位置關系的判斷.關鍵要記住若半徑為r,點到圓心的距離為d,則有:當d>r時,點在圓外;當d=r時,點在圓上,當d<r時,點在圓內(nèi).16、1【分析】首先計算乘方、開方,然后從左向右依次計算,求出算式的值是多少即可.【詳解】解:﹣(﹣π)0+()﹣1=2﹣1+2=1.故答案為:1.【點睛】此題考查的是實數(shù)的混合運算,掌握立方根的定義、零指數(shù)冪的性質(zhì)和負指數(shù)冪的性質(zhì)是解決此題的關鍵.17、4【解析】∵AB⊥BD,ED⊥BD∴∠B=∠D=90°,∠A+∠ACB=90°∵AC⊥CE,即∠ECD+∠ACB=90°∴∠A=∠ECD∴△ABC∽△CDE∴∴AB=418、或【分析】分點C在優(yōu)弧AB上和劣弧AB上兩種情況討論,根據(jù)切線的性質(zhì)得到∠OAC的度數(shù),再根據(jù)圓周角定理得到∠AOC的度數(shù),再利用三角形內(nèi)角和定理得出α與β的關系.【詳解】解:當點C在優(yōu)弧AB上時,如圖,連接OA、OB、OC,∵PA是⊙O的切線,∴∠PAO=90°,∴∠OAC=α-90°=∠OCA,∵∠AOC=2∠ABC=2β,∴2(α-90°)+2β=180°,∴;當點C在劣弧AB上時,如圖,∵PA是⊙O的切線,∴∠PAO=90°,∴∠OAC=90°-α=∠OCA,∵∠AOC=2∠ABC=2β,∴2(90°-α)+2β=180°,∴.綜上:α與β的關系是或.故答案為:或.【點睛】本題考查了切線的性質(zhì),圓周角定理,三角形內(nèi)角和定理,等腰三角形的性質(zhì),利用圓周角定理是解題的關鍵,同時注意分類討論.三、解答題(共66分)19、(1)AD=9;(2)AD=【分析】(1)連接BE,證明△ACD≌△BCE,得到AD=BE,在Rt△BAE中,AB=6,AE=3,求出BE,得到答案;(2)連接BE,證明△ACD∽△BCE,得到,求出BE的長,得到AD的長.【詳解】解:(1)如圖1,連接BE,∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,又∵AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,∵AC=BC=6,∴AB=6,∵∠BAC=∠CAE=45°,∴∠BAE=90°,在Rt△BAE中,AB=6,AE=3,∴BE=9,∴AD=9;(2)如圖2,連接BE,在Rt△ACB中,∠ABC=∠CED=30°,tan30°=,∵∠ACB=∠DCE=90°,∴∠BCE=∠ACD,∴△ACD∽△BCE,∴,∵∠BAC=60°,∠CAE=30°,∴∠BAE=90°,又AB=6,AE=8,∴BE=10,∴AD=.考點:相似三角形的判定與性質(zhì);全等三角形的判定與性質(zhì);勾股定理.20、2【解析】試題分析:連接OA,根據(jù)垂徑定理求出AD=6,∠ADO=90°,根據(jù)勾股定理得出方程,求出方程的解即可.試題解析:連接AO,∵點C是弧AB的中點,半徑OC與AB相交于點D,∴OC⊥AB,∵AB=11,∴AD=BD=6,設⊙O的半徑為r,∵CD=1,∴在Rt△AOD中,由勾股定理得:AD1=OD1+AD1,即:r1=(r﹣1)1+61,∴r=2,答:⊙O的半徑長為2.21、(1)見解析;(2)圖形見解析,10【解析】(1)直接利用等腰直角三角形的性質(zhì)得出C點位置;

(2)直接利用三角形中線的定義按要求作圖,結合網(wǎng)格可得出四邊形BDCD′的面積.【詳解】(1)如圖所示:(2)如圖所示:BD=.【點睛】考查等腰直角三角形的性質(zhì),作圖-旋轉(zhuǎn)變換,比較簡單,找出旋轉(zhuǎn)后的對應點是解題的關鍵.22、標語的長度應為米.【解析】首先分析圖形,根據(jù)題意構造直角三角形.本題涉及到兩個直角三角形,即△ABC和△ADC.根據(jù)已知角的正切函數(shù),可求得BC與AC、CD與AC之間的關系式,利用公共邊列方程求AC后,AE即可解答.【詳解】解:在Rt△ABC中,∠ACB=90°,∠ABC=45°,∴Rt△ABC是等腰直角三角形,AC=BC.在Rt△ADC中,∠ACD=90°,tan∠ADC==,∴DC=AC,∵BC-DC=BD,即AC-AC=18,∴AC=45,則AE=AC-EC=45-15=1.答:標語AE的長度應為1米.【點睛】本題要求學生借助仰角關系構造直角三角形,并結合圖形利用三角函數(shù)解直角三角形.23、(1)A社區(qū)居民人口至少有2.1萬人;(2)10.【分析】(1)設A社區(qū)居民人口有x萬人,根據(jù)“B社區(qū)居民人口數(shù)量不超過A社區(qū)居民人口數(shù)量的2倍”列出不等式求解即可;

(2)A社區(qū)的知曉人數(shù)+B社區(qū)的知曉人數(shù)=7.1×76%,據(jù)此列出關于m的方程并解答.【詳解】解:(1)設A社區(qū)居民人口有x萬人,則B社區(qū)有(7.1?x)萬人,

依題意得:7.1?x≤2x,

解得x≥2.1.

即A社區(qū)居民人口至少有2.1萬人;

(2)依題意得:1.2(1+m%)2+1×(1+m%)×(1+2m%)=7.1×76%,

設m%=a,方程可化為:1.2(1+a)2+(1+a)(1+2a)=1.7,

化簡得:32a2+14a?31=0,

解得a=0.1或a=?(舍),

∴m=10,

答:m的值為10.【點睛】本題考查了一元二次方程和一元一次不等式的應用,解題的關鍵是讀懂題意,找到題中相關數(shù)據(jù)的數(shù)量關系,列出不等式或方程.24、(1)當t=時,DE⊥AC;(2);(3)當t=時,;(4)t=時,=【分析】(1)若DE⊥AC,則∠EDA=90°,易證△ADE∽△ABC,進而列出關于t的比例式,即可求解;(2)由△CDF∽△CAB,得CF=,BF=8﹣,進而用割補法得到與之間的關系式,進而即可得到答案;(3)根據(jù),列出關于t的方程,即可求解;(4)過點E作EM⊥AC于點M,易證△AEM∽△ACB,從而得EM=,AM=,進而得DM=,根據(jù)當DM=ME時,=,列出關于t的方程,即可求解.【詳解】(1)∵∠B=,AB=6cm,BC=8cm,∴AC=10cm,若DE⊥AC,則∠EDA=90°,∴∠EDA=∠B,∵∠A=∠A,∴△ADE∽△ABC,∴,即,∴t=,答:當t=時,DE⊥AC;(2)∵DF⊥BC,∴∠DFC=90°,∴∠DFC=∠B,∵∠C=∠C,∴△CDF∽△CAB,∴,即,∴CF=,∴BF=8﹣,∴;(3)若存在某一時刻t,使得,根據(jù)題意得:,解得:,答:當t=時,;(4)過點E作EM⊥AC于點M,則△AEM∽△ACB∴=,∴,∴EM=,AM=,∴DM=10-2t-=,在Rt△DEM中,當DM=ME時,=,∴,解得:t=即:當t=時,=.【點睛】本題主要考查相似三角形的判定和性質(zhì)定理綜合,通過相似三角形的性質(zhì),用代

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論