![IEEE粒子濾波(課堂)課件_第1頁](http://file4.renrendoc.com/view/a388c1b41c739159e2981af5bb95064e/a388c1b41c739159e2981af5bb95064e1.gif)
![IEEE粒子濾波(課堂)課件_第2頁](http://file4.renrendoc.com/view/a388c1b41c739159e2981af5bb95064e/a388c1b41c739159e2981af5bb95064e2.gif)
![IEEE粒子濾波(課堂)課件_第3頁](http://file4.renrendoc.com/view/a388c1b41c739159e2981af5bb95064e/a388c1b41c739159e2981af5bb95064e3.gif)
![IEEE粒子濾波(課堂)課件_第4頁](http://file4.renrendoc.com/view/a388c1b41c739159e2981af5bb95064e/a388c1b41c739159e2981af5bb95064e4.gif)
![IEEE粒子濾波(課堂)課件_第5頁](http://file4.renrendoc.com/view/a388c1b41c739159e2981af5bb95064e/a388c1b41c739159e2981af5bb95064e5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
RandomFiniteSetsinStochasticFilteringBa-NguVo
EEEDepartment
UniversityofMelbourne
Australia.au/staff/bv/IEEEVictorianChapterJuly28,2009RandomFiniteSetsinStochastStochasticFilteringHistoryN.Wiener(1894-1964)
A.N.Kolmogorov(1903-1987)R.E.Kalman(1930-)1940’s:Wienerfilter PioneeringworkbyWiener,Kolmogorov1950’s:Kalmanfilter WorkbyBode&Shannon,Zadeh&Ragazzini,Levinson,Swerling,Stratonovich,etc.1970’s:Aerospaceapplications Sorenson&Alspach,Singer,Bar-Shalom,Reid,etc.1960’s:
PublicationoftheKalmanfilter,Kalman-Bucyfilter,Schmidt’s1stimplementation–ApolloprogramLMSalgorithmbyWidrow&Hoff2StochasticFilteringHistoParticleFilter(1990’s--) Computationaltoolsfornon-linearnon-Gaussianfiltering Gordon,Salmond&Smith,Doucet…RandomFiniteSet(1990’s--)
Unifiedframeworkformulti-objectfiltering&control ProbabilityHypothesisDensity(PHD)filters,Bernoullifilter PioneeringworkbyMahlerStochasticFiltering:ThePresent3ParticleFilter(1990’s--)RandTheBayes(nonlinear)FilterPracticalChallengesMulti-ObjectFilteringRandomFiniteSetPHD/CPHDFilters&ApplicationsConclusionsOutline4TheBayes(nonlinear)FilterTheBayes(nonlinear)Filterstate-vectorstatedynamicstatespaceobservationspacexkxk-1zk-1zk
fk|k-1(xk|xk-1)MarkovTransitionDensityMeasurementLikelihoodgk(zk|xk)Objectivemeasurementhistory
(z1,…,zk)posteriorpdfofthestatepk(xk|z1:k)SystemModel5TheBayes(nonlinear)Filtstate-vectorstatedynamicstatespaceobservationspacexkxk-1zk-1zkBayesfilterpk-1(xk-1
|z1:k-1)pk|k-1(xk|z1:k-1)pk(xk|z1:k)predictiondata-update
pk-1(xk-1|z1:k-1)
dxk-1
fk|k-1(xk|xk-1)gk(zk|xk)
pk|k-1(xk|z1:k-1)TheBayes(nonlinear)Filter
fk|k-1(xk|xk-1)gk(zk|xk)
gk(zk|xk)pk-1(xk-1|z1:k-1)dxk6state-vectorstatedynamicstatestate-vectorstatedynamicstatespaceobservationspacexkxk-1zk-1zkTheBayes(nonlinear)Filter
fk|k-1(xk|xk-1)gk(zk|xk)pk-1(.
|z1:k-1)pk|k-1(.
|z1:k-1)pk(.
|z1:k)predictiondata-updateBayesfilterN(.;mk-1,Pk-1)N(.;mk|k-1,Pk|k-1)N(.;mk,Pk)Kalmanfilteri=1N{wk|k-1,xk|k-1}i=1N(i)(i){wk,xk}
i=1
N(i)(i){wk-1,xk-1}(i)(i)Particlefilter7state-vectorstatedynamicstatestate-vectorstatedynamicstatespaceobservationspacexkxk-1zk-1zkPracticalChallenges
fk|k-1(xk|xk-1)gk(zk|xk)Sofar,weassumedexactly1observationateachtime
HoldsonlyforasmallnumberofapplicationsPracticalmeasuringdevice:mayfailtodetecttrueobservation(detectionuncertainty)&picksupfalseobservations(clutter)8state-vectorstatedynamicstatePracticalChallengesNotdetectedDetectionuncertainty:DetectedFalseobservations(clutter)orNumberoffalseobservationsunknownrandomFalse9PracticalChallengesNotdPracticalChallengesNoinformationonwhichistheobservationofthestateNumberofobservationsisarandomvariable.‘+’Observation=NotdetectedDetectedFalse10PracticalChallengesNoinstate-vectorstatedynamicstatespaceobservationspacexkxk-1zk-1zkPracticalChallengesSummaryofpracticalchallenges:Numberofobservationsisrandom&timevaryingTrueobservationmaynotbepresentDonotknowwhichobservationsarefalse/trueOrderingofobservationsnotrelevant11state-vectorstatedynamicstateobservation
producedbyobjectsstatedynamicstatespaceobservationspace5objects3objectsXk-1XkObjective:Jointlyestimatethenumber&statesofobjectsNumerousapplications:defence,surveillance,robotics,biomed,…Challenges:RandomnumberofobjectsandmeasurementsDetectionuncertainty,clutter,associationuncertaintyMulti-ObjectFiltering12observationproducedbyobjeEstimateiscorrectbutestimationerror???TrueMulti-objectstateEstimatedMulti-objectstateHowcanwemathematicallyrepresentthemulti-objectstate?2objectsUsualpractice:stackindividualstatesintoalargevector!2objectsRemedy:useFundamentalinconsistency:Multi-ObjectFiltering13EstimateiscorrectbutestimaTrueMulti-objectstateEstimatedMulti-objectState2objectsnoobjectTrueMulti-objectstateEstimatedMulti-objectState2objects1objectWhataretheestimationerrors?
Multi-ObjectFiltering14TrueEstimated2objectsnoobjecMiss-distance:errorbetweenestimateandtruestatemeasureshowcloseanestimateistothetruevaluewell-understoodforsingletarget:Euclideandistance,MSE,etcfundamentalinestimation/filtering&controlVectorrepresentationdoesn’tadmitmulti-objectmiss-distanceFinitesetrepresentationadmitsmulti-objectmiss-distance,e.g.Haussdorf,Wasserstein,OSPA[Schuhmacheret.al.08]Infactthe“distance” isadistanceforsetsnotvectorsMulti-ObjectFiltering15Miss-distance:errorbetweeneMulti-ObjectFilteringstatesmulti-objectstatemulti-objectobservationXobservationsXZ
pk-1(Xk-1|Z1:k-1)
pk(Xk|Z1:k)
pk|k-1(Xk|Z1:k-1)predictiondata-updateReconceptualiseasafiniteset-valuedfilteringproblemMulti-objectstate&observationrepresentedbyfinitesetsBayesianframeworktreatsstate/observationasrandomvariablesBayesianmulti-objectfiltering
requiresrandomfiniteset(RFS)16Multi-ObjectFilteringstatRandomFiniteSetThenumberofpointsisrandom,ThepointshavenoorderingandarerandomAnRFSisafiniteset-valuedrandomvariableAlsoknownas:pointprocessorrandompointpatternWhatisarandomfiniteset(RFS)?Example1:BernoulliRFSsample
u~uniform[0,1]if
u<r,
sample
x~p(.),end;
EExample2:multi-BernoulliRFS=
UnionofBernoulliRFSs17RandomFiniteSetThenumbeRandomFiniteSetESamplen
~Poiss(r),
fori=1:n,
sample
xi~p(.),end;
Example3:PoissonRFSESamplen
~c(.),
fori=1:n,
sample
xi~p(.),end;
Example4:i.i.d.clusterRFS18RandomFiniteSetESamplenRandomFiniteSetNeedsuitablenotionsofdensity/integrationforfiniteset
pk-1(Xk-1|Z1:k-1)
pk(Xk|Z1:k)
pk|k-1(Xk|Z1:k-1)predictiondata-update??statesmulti-objectstatemulti-objectobservationXobservationsXZMulti-objectBayesfilter19RandomFiniteSetNeedsuitRandomFiniteSetBelief“density”
ofS
fS:F(E)
?[0,¥)
bS
(T)
=
òT
fS
(X)dXBelief“distribution”
ofSbS
(T)=P(SíT),Tí
EESProbabilitydensity
ofS
pS:F(E)
?[0,¥)
PS
(T
)
=
òT
pS
(X)m(dX)Probabilitydistribution
ofSPS
(T
)=P(S?T),
T
í
F(E)F(E)SCollectionoffinitesubsetsof
E
Statespace
Mahler’sFiniteSetStatistics(1994)Choquet(1968)TTConventionalintegralSetintegralPointProcessTheory(1950-1960’s)VSD(2005)20RandomFiniteSetBelief“d
Computationallyexpensive!single-objectBayesfilter
multi-objectBayesfilter
stateofsystem:
randomvectorfirst-momentfilter(e.g.
a-b-g
filter)stateofsystem:
randomsetfirst-momentfilter(“PHD”filter)
Single-object
Multi-objectThePHDFilter
pk-1(Xk-1|Z1:k-1)
pk(Xk|Z1:k)
pk|k-1(Xk|Z1:k-1)predictiondata-updateMulti-objectBayesfilter21Computationallyexpensive!sinThePHDFilterx0statespacevPHD(intensityfunction)ofanRFSS
v(x)dx
=expectednumberofobjectsin
SSv(x0)
=densityofexpectednumberofobjectsat
x022ThePHDFilterx0statespacThePHDFilterstatespace
vk
vk-1
PHDfilter[Mahler03]vk-1(xk-1|Z1:k-1)vk(xk|Z1:k)
vk|k-1(xk|Z1:k-1)PHDpredictionPHDupdateMulti-objectBayesfilter
pk-1(Xk-1|Z1:k-1)
pk(Xk|Z1:k)
pk|k-1(Xk|Z1:k-1)predictionupdateAvoidsdataassociation!23ThePHDFilterstatespaceThePHDFilter:Predictionvk|k-1(xk
|Z1:k-1)=fk|k-1(xk,xk-1)
vk-1(xk-1|Z1:k-1)dxk-1+gk(xk)
intensityfromprevioustime-step
termforspontaneousobjectbirthsfk|k-1(xk,xk-1)=ek|k-1(xk-1)fk|k-1(xk|xk-1)+bk|k-1(xk|xk-1)MarkovtransitionintensityprobabilityofobjectsurvivaltermforobjectsspawnedbyexistingobjectsMarkovtransitiondensitypredictedintensityNk|k-1=vk|k-1
(x|Z1:k-1)dxpredictedexpectednumberofobjects(Fk|k-1a)(xk)
=
fk|k-1(xk,x)a(x)dx
+gk(xk)
vk|k-1=
Fk|k-1vk-124ThePHDFilter:PredictionThePHDFilter:Update
vk(xk|Z1:k)
[
SzZkDk(z)+kk(z)
pD,k(xk)gk(z|xk)
+1-
pD,k(xk)]vk|k-1(xk|Z1:k-1)
Dk(z)=pD,k(x)gk(z|x)vk|k-1(x|Z1:k-1)dx
Nk=vk(x|Z1:k)dxBayes-updatedintensitypredictedintensity(fromprevioustime)intensityoffalsealarmssensorlikelihoodfunctionprobabilityofdetectionexpectednumberofobjectsmeasurementvk
=
Ykvk|k-1(Yka)(x)
=zZk<yk,z,a>+kk(z)
yk,z(x)
+1-
pD,k(x)]a(x)[
S25ThePHDFilter:Updatevk(ThePHDFilter
vk-1(.
|Z1:k-1)vk(.
|Z1:k)
vk|k-1(.
|Z1:k-1)GaussianMixturePHDFilter[VM05,06],
ParticlePHDFilter[VSD03,05],[Mahler&Zajic03],[Sidenbladh03]{wk-1,xk-1}j=1Jk-1(j)(j)j=1Jk|k-1(j)(j){wk|k-1,xk|k-1}{wk,xk}
j=1
Jk(j)(j){wk-1,mk-1,Pk-1}j=1Jk-1(j)(j)(j){wk|k-1,mk|k-1,Pk|k-1}j=1Jk|k-1(j)(j)(j){wk,mk,Pk}
j=1
Jk(j)(j)(j)26ThePHDFiltervk-1(.|Z1ThePHDfilterExtended&UnscentedKalmanPHDfilter[VM06]JumpMarkovPHDfilter[Pashaet.al.06]Trackcontinuity[Clarket.al.06]Convergence[Clarket.al.07]BritishPetrolium(Pipelinetracking)07Visualtracking[Phamet.al.07]Celltracking[Juanget.al.09]Bistaticradar[Tobias&Lanterman05]
Tracklabellingtrackassociation[Pantaet.al.07,Linet.al06]Convergence[VDS05,Johansenetal07,Clark&Bell06,]Computervision[Maggioet.al.07,Wanget.al.2008,]AuxiliaryparticlePHDfilter[Whitleyet.al.07]Trafficintensityestimation[Battistelliet.al.08]Particle-PHDfilter[VSD03,05]
GM-PHDfilter[VM05,06]27ThePHDfilterExtended&UThePHDfilterVideodata:trackingfootballplayers[Phametal.07]DatacourtesyofCzyzet.al.28ThePHDfilterVideodata:ThePHDfilterVideotrackingofpeoplewalking(340frames)[Phametal.07]DatacourtesyofK.SmithIDIAPResearchInstitute.29ThePHDfilterVideotrackiTheCardinalisedPHDFilterDrawbackofPHDfilter:Highvarianceofcardinalityestimate
RelaxPoissonassumption:allowsanycardinalitydistributionJointlypropagate:intensityfunction&cardinalitydistribution.
HighercomputationalcostthanPHDStillcheaperthanstate-of-the-arttraditionaltechniquesCPHDfilter[Mahler06,07],GaussianMixtureCPHDfilter[VVC06,07]vk-1(xk-1|Z1:k-1)vk(xk|Z1:k)
vk|k-1(xk|Z1:k-1)intensitypredictionintensityupdateck-1(n|Z1:k-1)ck(n|Z1:k)
ck|k-1(n|Z1:k-1)cardinalitypredictioncardinalityupdate30TheCardinalisedPHDFilteGMTIRadar[Ulmkeet.al.07]TestedbyFGAN(NATOBoldAvengerexercise)07,Acousticsourcetracking[Phamet.al.08]TestedonMSTWGandSEABARDatasets[Erdincet.al.08]ComparisonwithMHT[Svenssonetal.09]Convoytracking[Pollardet.al.09]Trackingfromaerialimage[Pollardet.al.09]LockheedMartin(SpaceFence)09.GM-CPHDfilter[VVC05,06]TheCardinalisedPHDFilter31GMTIRadar[Ulmkeet.al.07]GSonarimagesTheCardinalisedPHDFilter32SonarimagesTheCardinalisLargescalemultipletargettrackingwithsmallfalsealarmrateCourtesyofLockheedMartinTheCardinalisedPHDFilter33LargescalemultipletargettrUpto1500closelyspacedtargetsonastandardlaptop!CourtesyofLockheedMartinOSPAdistance(satisfiesallmetricaxioms)=pertargetcardinality&stateerrorTheCardinalisedPHDFilter34Upto1500closelyspacedtargSLAM(SimultaneousLocalisationandMapping)Objective:Jointlyestimaterobotpose&map(setoflandmarks)ThePHDFilterinSLAM35SLAM(SimultaneousLocalisatioThePHDFilterinSLAMRobotposeMapMeasurementsControlsMeasurementlikelihoodSetintegralTransitiondensityRFS-SLAMpredictionRFS-SLAMupdate(Feature)Map=finitesetoflandmarksBayesianSLAMrequiresmodellingthemapbyanRFSSetintegralRFS-SLAM[Mullaneet.al.08]36ThePHDFilterinSLAMRoboMapping:specialcaseofSLAMwithknownrobotposesPHDapproximation:propagate1stmomentofthemapRFSPHDoftheposteriormapRFSThePHDFilterinSLAM37Mapping:specialcaseofSLAMMapping:specialcaseofSLAMwithknownrobotposesThePHDFilterinSLAM38Mapping:specialcaseofSLAMExperiment:NanyangTechnologicalUniversityCampus
PHDSLAM(approximationofRFS-SLAMrecursion):AugmentlandmarkswiththevehicleposeRepresentsetofaugmentedlandmarksasamarkedpointprocessPropagatePHDofthemarkedpointprocessThePHDFilterinSLAM39Experiment:NanyangTechnologiLowclutter:All3algorithmscanclosetheloopHigherclutter:OnlyPHD-SLAMcanclosetheloopGroundtruthplottedingreenThePHDFilterinSLAM40Lowclutter:Higherclutter:GroConcludingRemarksThankYou!RandomFiniteSetFilteringBorneoutofpractical&fundamentalnecessity
SignificanttheoreticalextensionofclassicalfilteringYieldsefficientalgorithmssuchasthePHDfiltersBeyondthePHDfilters
Multi-Bernoulli,Gauss-PoissonfiltersFilteringwithimagedataRobustnessStochasticcontrolFormoreinfopleasesee.auSeealso:.au/staff/bv/publications.html41ConcludingRemarksThankYouSomeReferencesBooksD.DaleyandD.Vere-Jones,AnIntroductiontotheTheoryofPointProcesses,Springer-Verlag,1988.D.Stoyan,D.Kendall,J.Mecke,StochasticGeometryanditsApplications,JohnWiley&Sons,1995I.Goodman,R.Mahler,andH.Nguyen,MathematicsofDataFusion.KluwerAcademicPublishers,1997.R.Mahler,StatisticalMultisource-MultitargetInformationFusion,ArtechHouse,2007.M.Mallick,V.Krisnamurthy,B.-N.Vo(eds),AdvancedTopicsandApplicationsinIntegratedTracking,Classification,andSensorManagement,IEEE-Wiley(underreview)PapersR.Mahler,“Multi-targetBayesfilteringviafirst-ordermulti-targetmoments,”IEEETrans.AES,vol.39,no.4,pp.1152–1178,2003.B.-N.Vo,S.Singh,andA.Doucet,“SequentialMonteCarlomethodsformulti-targetfilteringwithrandomfinitesets,”IEEETrans.AES,vol.41,no.4,pp.1224–1245,2005.B.-N.Vo,andW.K.Ma,“TheGaussianmixturePHDfilter,”IEEETrans.SignalProcessing,IEEETrans.SignalProcessing,Vol.54,No.11,pp.4091-4104,2006.
R.Mahler,“PHDfilterofhigherorderintargetnumber,”IEEETrans.Aerospace&ElectronicSystems,vol.43,no.4,pp.1523–1543,2007B.T.Vo,B.-N.Vo,andA.Cantoni,"AnalyticimplementationsoftheCardinalizedProbabilityHypothesisDensityFilter,"IEEETrans.SignalProcessing,Vol.55,
No.7,
Part2,
pp.3553-3567,2007.B.-T.Vo,B.-NVo,andA.Cantoni,"TheCardinalityBalancedMulti-targetMulti-Bernoullifilteranditsimplementations,"IEEETrans.SignalProcessing,vol.57,no.2,pp.409–423,2009.J.Mullane,B.-N.Vo,M.AdamsandS.Wijesoma,"ARandomSetFormulationforBayesianSLAM,"InternationalConferenceonIntelligentRobotsandSystems,Nice,France,2008.
42SomeReferencesBooks42Collaborators(innoparticularorder)MahlerR., LockheedMartinSinghS., CambridgeDoucetA., U.BritishColumbiaMaW.K., ChineseU.HongKongPantaK., BAESystemsBaddeleyA., U.WesternAustraliaClarkD., Herriot-WattU.VoB.T., U.WesternAustraliaCantoniA., U.WesternAustraliaPashaA., U.NewSouthWalesTuanH.D., U.NewSouthWalesZuyevS., U.StrathclydeMullaneJ., NanyangTechnologicalU.AdamsM., NanyangTechnologicalU.WijesomaS., NanyangTechnologicalU.SchumacherD., U.BernRisticB., DSTOAustraliaGuernJ., LockheedMartinPhamT., INRIASuterD. U.Adelaide43Collaborators(innoparticRandomFiniteSetsinStochasticFilteringBa-NguVo
EEEDepartment
UniversityofMelbourne
Australia.au/staff/bv/IEEEVictorianChapterJuly28,2009RandomFiniteSetsinStochastStochasticFilteringHistoryN.Wiener(1894-1964)
A.N.Kolmogorov(1903-1987)R.E.Kalman(1930-)1940’s:Wienerfilter PioneeringworkbyWiener,Kolmogorov1950’s:Kalmanfilter WorkbyBode&Shannon,Zadeh&Ragazzini,Levinson,Swerling,Stratonovich,etc.1970’s:Aerospaceapplications Sorenson&Alspach,Singer,Bar-Shalom,Reid,etc.1960’s:
PublicationoftheKalmanfilter,Kalman-Bucyfilter,Schmidt’s1stimplementation–ApolloprogramLMSalgorithmbyWidrow&Hoff45StochasticFilteringHistoParticleFilter(1990’s--) Computationaltoolsfornon-linearnon-Gaussianfiltering Gordon,Salmond&Smith,Doucet…RandomFiniteSet(1990’s--)
Unifiedframeworkformulti-objectfiltering&control ProbabilityHypothesisDensity(PHD)filters,Bernoullifilter PioneeringworkbyMahlerStochasticFiltering:ThePresent46ParticleFilter(1990’s--)RandTheBayes(nonlinear)FilterPracticalChallengesMulti-ObjectFilteringRandomFiniteSetPHD/CPHDFilters&ApplicationsConclusionsOutline47TheBayes(nonlinear)FilterTheBayes(nonlinear)Filterstate-vectorstatedynamicstatespaceobservationspacexkxk-1zk-1zk
fk|k-1(xk|xk-1)MarkovTransitionDensityMeasurementLikelihoodgk(zk|xk)Objectivemeasurementhistory
(z1,…,zk)posteriorpdfofthestatepk(xk|z1:k)SystemModel48TheBayes(nonlinear)Filtstate-vectorstatedynamicstatespaceobservationspacexkxk-1zk-1zkBayesfilterpk-1(xk-1
|z1:k-1)pk|k-1(xk|z1:k-1)pk(xk|z1:k)predictiondata-update
pk-1(xk-1|z1:k-1)
dxk-1
fk|k-1(xk|xk-1)gk(zk|xk)
pk|k-1(xk|z1:k-1)TheBayes(nonlinear)Filter
fk|k-1(xk|xk-1)gk(zk|xk)
gk(zk|xk)pk-1(xk-1|z1:k-1)dxk49state-vectorstatedynamicstatestate-vectorstatedynamicstatespaceobservationspacexkxk-1zk-1zkTheBayes(nonlinear)Filter
fk|k-1(xk|xk-1)gk(zk|xk)pk-1(.
|z1:k-1)pk|k-1(.
|z1:k-1)pk(.
|z1:k)predictiondata-updateBayesfilterN(.;mk-1,Pk-1)N(.;mk|k-1,Pk|k-1)N(.;mk,Pk)Kalmanfilteri=1N{wk|k-1,xk|k-1}i=1N(i)(i){wk,xk}
i=1
N(i)(i){wk-1,xk-1}(i)(i)Particlefilter50state-vectorstatedynamicstatestate-vectorstatedynamicstatespaceobservationspacexkxk-1zk-1zkPracticalChallenges
fk|k-1(xk|xk-1)gk(zk|xk)Sofar,weassumedexactly1observationateachtime
HoldsonlyforasmallnumberofapplicationsPracticalmeasuringdevice:mayfailtodetecttrueobservation(detectionuncertainty)&picksupfalseobservations(clutter)51state-vectorstatedynamicstatePracticalChallengesNotdetectedDetectionuncertainty:DetectedFalseobservations(clutter)orNumberoffalseobservationsunknownrandomFalse52PracticalChallengesNotdPracticalChallengesNoinformationonwhichistheobservationofthestateNumberofobservationsisarandomvariable.‘+’Observation=NotdetectedDetectedFalse53PracticalChallengesNoinstate-vectorstatedynamicstatespaceobservationspacexkxk-1zk-1zkPracticalChallengesSummaryofpracticalchallenges:Numberofobservationsisrandom&timevaryingTrueobservationmaynotbepresentDonotknowwhichobservationsarefalse/trueOrderingofobservationsnotrelevant54state-vectorstatedynamicstateobservation
producedbyobjectsstatedynamicstatespaceobservationspace5objects3objectsXk-1XkObjective:Jointlyestimatethenumber&statesofobjectsNumerousapplications:defence,surveillance,robotics,biomed,…Challenges:RandomnumberofobjectsandmeasurementsDetectionuncertainty,clutter,associationuncertaintyMulti-ObjectFiltering55observationproducedbyobjeEstimateiscorrectbutestimationerror???TrueMulti-objectstateEstimatedMulti-objectstateHowcanwemathematicallyrepresentthemulti-objectstate?2objectsUsualpractice:stackindividualstatesintoalargevector!2objectsRemedy:useFundamentalinconsistency:Multi-ObjectFiltering56EstimateiscorrectbutestimaTrueMulti-objectstateEstimatedMulti-objectState2objectsnoobjectTrueMulti-objectstateEstimatedMulti-objectState2objects1objectWhataretheestimationerrors?
Multi-ObjectFiltering57TrueEstimated2objectsnoobjecMiss-distance:errorbetweenestimateandtruestatemeasureshowcloseanestimateistothetruevaluewell-understoodforsingletarget:Euclideandistance,MSE,etcfundamentalinestimation/filtering&controlVectorrepresentationdoesn’tadmitmulti-objectmiss-distanceFinitesetrepresentationadmitsmulti-objectmiss-distance,e.g.Haussdorf,Wasserstein,OSPA[Schuhmacheret.al.08]Infactthe“distance” isadistanceforsetsnotvectorsMulti-ObjectFiltering58Miss-distance:errorbetweeneMulti-ObjectFilteringstatesmulti-objectstatemulti-objectobservationXobservationsXZ
pk-1(Xk-1|Z1:k-1)
pk(Xk|Z1:k)
pk|k-1(Xk|Z1:k-1)predictiondata-updateReconceptualiseasafiniteset-valuedfilteringproblemMulti-objectstate&observationrepresentedbyfinitesetsBayesianframeworktreatsstate/observationasrandomvariablesBayesianmulti-objectfiltering
requiresrandomfiniteset(RFS)59Multi-ObjectFilteringstatRandomFiniteSetThenumberofpointsisrandom,ThepointshavenoorderingandarerandomAnRFSisafiniteset-valuedrandomvariableAlsoknownas:pointprocessorrandompointpatternWhatisarandomfiniteset(RFS)?Example1:BernoulliRFSsample
u~uniform[0,1]if
u<r,
sample
x~p(.),end;
EExample2:multi-BernoulliRFS=
UnionofBernoulliRFSs60RandomFiniteSetThenumbeRandomFiniteSetESamplen
~Poiss(r),
fori=1:n,
sample
xi~p(.),end;
Example3:PoissonRFSESamplen
~c(.),
fori=1:n,
sample
xi~p(.),end;
Example4:i.i.d.clusterRFS61RandomFiniteSetESamplenRandomFiniteSetNeedsuitablenotionsofdensity/integrationforfiniteset
pk-1(Xk-1|Z1:k-1)
pk(Xk|Z1:k)
pk|k-1(Xk|Z1:k-1)predictiondata-update??statesmulti-objectstatemulti-objectobservationXobservationsXZMulti-objectBayesfilter62RandomFiniteSetNeedsuitRandomFiniteSetBelief“density”
ofS
fS:F(E)
?[0,¥)
bS
(T)
=
òT
fS
(X)dXBelief“distribution”
ofSbS
(T)=P(SíT),Tí
EESProbabilitydensity
ofS
pS:F(E)
?[0,¥)
PS
(T
)
=
òT
pS
(X)m(dX)Probabilitydistribution
ofSPS
(T
)=P(S?T),
T
í
F(E)F(E)SCollectionoffinitesubsetsof
E
Statespace
Mahler’sFiniteSetStatistics(1994)Choquet(1968)TTConventionalintegralSetintegralPointProcessTheory(1950-1960’s)VSD(2005)63RandomFiniteSetBelief“d
Computationallyexpensive!single-objectBayesfilter
multi-objectBayesfilter
stateofsystem:
randomvectorfirst-momentfilter(e.g.
a-b-g
filter)stateofsystem:
randomsetfirst-momentfilter(“PHD”filter)
Single-object
Multi-objectThePHDFilter
pk-1(Xk-1|Z1:k-1)
pk(Xk|Z1:k)
pk|k-1(Xk|Z1:k-1)predictiondata-updateMulti-objectBayesfilter64Computationallyexpensive!sinThePHDFilterx0statespacevPHD(intensityfunction)ofanRFSS
v(x)dx
=expectednumberofobjectsin
SSv(x0)
=densityofexpectednumberofobjectsat
x065ThePHDFilterx0statespacThePHDFilterstatespace
vk
vk-1
PHDfilter[Mahler03]vk-1(xk-1|Z1:k-1)vk(xk|Z1:k)
vk|k-1(xk|Z1:k-1)PHDpredictionPHDupdateMulti-objectBayesfilter
pk-1(Xk-1|Z1:k-1)
pk(Xk|Z1:k)
pk|k-1(Xk|Z1:k-1)predictionupdateAvoidsdataassociation!66ThePHDFilterstatespaceThePHDFilter:Predictionvk|k-1(xk
|Z1:k-1)=fk|k-1(xk,xk-1)
vk-1(xk-1|Z1:k-1)dxk-1+gk(xk)
intensityfromprevioustime-step
termforspontaneousobjectbirthsfk|k-1(xk,xk-1)=ek|k-1(xk-1)fk|k-1(xk|xk-1)+bk|k-1(xk|x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代交通樞紐的鐵路貨運(yùn)效率優(yōu)化
- 深度解讀如何用云計算構(gòu)建高效智能制造平臺
- 國慶節(jié)巡航摩旅活動方案
- 小學(xué)趣味運(yùn)動會活動方案策劃
- 2024年春七年級地理下冊 第九章 第二節(jié) 巴西說課稿 (新版)新人教版
- 23 梅蘭芳蓄須說課稿-2024-2025學(xué)年四年級上冊語文統(tǒng)編版001
- 8 千年夢圓在今朝(說課稿)2023-2024學(xué)年部編版語文四年級下冊
- 5 協(xié)商決定班級事務(wù) 說課稿-2024-2025學(xué)年道德與法治五年級上冊統(tǒng)編版
- 2023八年級英語上冊 Module 9 Population Unit 3 Language in use說課稿(新版)外研版
- 《10天然材料和人造材料》說課稿-2023-2024學(xué)年科學(xué)三年級下冊青島版
- 文檔協(xié)同編輯-深度研究
- 七年級數(shù)學(xué)新北師大版(2024)下冊第一章《整式的乘除》單元檢測習(xí)題(含簡單答案)
- 2024-2025學(xué)年云南省昆明市盤龍區(qū)高一(上)期末數(shù)學(xué)試卷(含答案)
- 五年級上冊寒假作業(yè)答案(人教版)
- 2024年財政部會計法律法規(guī)答題活動題目及答案一
- 2025年中考語文復(fù)習(xí)熱搜題速遞之說明文閱讀(2024年7月)
- 班組現(xiàn)場5S與目視化管理
- 和達(dá)投資集團(tuán)(杭州)有限公司招聘筆試沖刺題2025
- 政企單位春節(jié)元宵猜燈謎活動謎語200個(含謎底)
- 綜治工作培訓(xùn)課件
- 2024年云網(wǎng)安全應(yīng)知應(yīng)會考試題庫
評論
0/150
提交評論