版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.已知,則A. B.C. D.2.如圖,在正方體ABCD﹣A1B1C1D1中,異面直線AC與A1D1所成的角是A.30° B.45°C.60° D.90°3.如果直線和函數(shù)的圖象恒過同一個定點,且該定點始終落在圓的內(nèi)部或圓上,那么的取值范圍是()A. B.C. D.4.下列函數(shù)中既是奇函數(shù),又是其定義域上的增函數(shù)的是A. B.C. D.5.將函數(shù)圖象上所有點的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變),再將所得的圖象向右平移個單位,得到的圖象對應(yīng)的解析式是A. B.C. D.6.已知函數(shù)的部分圖象如圖所示,則的值可以為A.1 B.2C.3 D.47.已知是第三象限角,且,則()A. B.C. D.8.設(shè),則()A.13 B.12C.11 D.109.下列運算中,正確的是()A. B.C. D.10.已知,是不共線的向量,,,,若,,三點共線,則實數(shù)的值為()A. B.10C. D.5二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.已知函數(shù)的最大值與最小值之差為,則______12.把函數(shù)的圖像向右平移后,再把各點橫坐標(biāo)伸長到原來的2倍,所得函數(shù)解析式是______13.若,,則a、b的大小關(guān)系是______.(用“<”連接)14.已知是內(nèi)一點,,記的面積為,的面積為,則__________15.若偶函數(shù)在區(qū)間上單調(diào)遞增,且,,則不等式的解集是___________.三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.已知角的終邊經(jīng)過點,試求:(1)tan的值;(2)的值.17.已知函數(shù),.(1)解不等式:;(2)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;(3)若函數(shù)的反函數(shù)為,且,其中為奇函數(shù),為偶函數(shù),試比較與的大小.18.在長方體ABCD-A1B1C1D1中,求證:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC19.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)在區(qū)間上的最小值和最大值.20.某工廠利用輻射對食品進(jìn)行滅菌消毒,先準(zhǔn)備在該廠附近建一職工宿舍,并對宿舍進(jìn)行防輻射處理,防輻射材料的選用與宿舍到工廠距離有關(guān).若建造宿舍的所有費用p(萬元)和宿舍與工廠的距離x(km)的關(guān)系式為p=k4x+5(0≤x≤15),若距離為10km時,測算宿舍建造費用為20萬元.為了交通方便,工廠與宿舍之間還要修一條道路,已知購置修路設(shè)備需10萬元,鋪設(shè)路面每千米成本為4萬元.設(shè)(1)求fx(2)宿舍應(yīng)建在離工廠多遠(yuǎn)處,可使總費用最小,并求fx21.如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=2,D,E分別為棱AB,BC的中點,M為棱AA1的中點(1)證明:A1B1⊥C1D;(2)若AA1=4,求三棱錐A﹣MDE的體積
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、D【解析】考點:同角間三角函數(shù)關(guān)系2、B【解析】在正方體ABCD﹣A1B1C1D1中,AC∥A1C1,所以為異面直線AC與A1D1所成的角,由此能求出結(jié)果.【詳解】因為AC∥A1C1,所以為異面直線AC與A1D1所成的角,因為是等腰直角三角形,所以.故選:B【點睛】本題考查異面直線所成的角的求法,屬于基礎(chǔ)題.3、C【解析】由已知可得.再由由點在圓內(nèi)部或圓上可得.由此可解得點在以和為端點的線段上運動.由表示以和為端點的線段上的點與坐標(biāo)原點連線的斜率可得選項【詳解】函數(shù)恒過定點.將點代入直線可得,即由點在圓內(nèi)部或圓上可得,即.或.所以點在以和為端點的線段上運動表示以和為端點的線段上的點與坐標(biāo)原點連線的斜率.所以,.所以故選:C【點睛】關(guān)鍵點點睛:解決本題類型的問題,關(guān)鍵在于由已知條件得出所滿足的可行域,以及明確所表示的幾何意義.4、C【解析】對于A,函數(shù)的偶函數(shù),不符合,故錯;對于B,定義域為,是非奇非偶函數(shù),故錯;對于C,定義域R,是奇函數(shù),且是增函數(shù),正確;對于D,是奇函數(shù),但是是減函數(shù),故錯考點:本題考查函數(shù)的奇偶性和單調(diào)性點評:解決本題的關(guān)鍵是掌握初等函數(shù)的奇偶性和單調(diào)性5、D【解析】橫坐標(biāo)伸長倍,則變?yōu)椋桓鶕?jù)左右平移的原則可得解析式.【詳解】橫坐標(biāo)伸長倍得:向右平移個單位得:本題正確選項:【點睛】本題考查三角函數(shù)圖象平移變換和伸縮變換,關(guān)鍵是能夠明確伸縮變換和平移變換都是針對于的變化.6、B【解析】由圖可知,故,選.7、A【解析】由是第三象限角可判斷,利用平方關(guān)系即可求解.【詳解】解:因為是第三象限角,且,所以,故選:A.8、A【解析】將代入分段函數(shù)解析式即可求解.【詳解】,故選:A9、C【解析】根據(jù)對數(shù)和指數(shù)的運算法則逐項計算即可.【詳解】,故A錯誤;,故B錯誤;,故C正確;,故D錯誤.故選:C.10、A【解析】由向量的線性運算,求得,根據(jù)三點共線,得到,列出方程組,即可求解.【詳解】由,,可得,因為,,三點共線,所以,所以存在唯一的實數(shù),使得,即,所以,解得,.故選:A.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、或.【解析】根據(jù)冪函數(shù)的性質(zhì),結(jié)合題意,分類討論,利用單調(diào)性列出方程,即可求解.【詳解】由題意,函數(shù),當(dāng)時,函數(shù)在上為單調(diào)遞增函數(shù),可得,解得;當(dāng)時,顯然不成立;當(dāng)時,函數(shù)在上為單調(diào)遞減函數(shù),可得,解得,綜上可得,或.故答案為:或.12、【解析】利用三角函數(shù)圖像變換規(guī)律直接求解【詳解】解:把函數(shù)的圖像向右平移后,得到,再把各點橫坐標(biāo)伸長到原來的2倍,得到,故答案為:13、【解析】容易看出,<0,>0,從而可得出a,b的大小關(guān)系【詳解】,>0,,∴a<b故答案為a<b【點睛】本題主要考查對數(shù)函數(shù)的單調(diào)性,考查對數(shù)函數(shù)和指數(shù)函數(shù)的值域.意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.14、【解析】設(shè)BC中點為M,則,所以P到BC的距離為點A到BC距離的,故15、【解析】根據(jù)題意,結(jié)合函數(shù)的性質(zhì),分析可得在區(qū)間上的性質(zhì),即可得答案.【詳解】因為偶函數(shù)在區(qū)間上單調(diào)遞增,且,,所以在區(qū)間上單調(diào)上單調(diào)遞減,且,所以的解集為.故答案為:三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、(1);(2).【解析】(1)根據(jù)特殊角的三角函數(shù)值,結(jié)合正切函數(shù)的定義進(jìn)行求解即可;(2)利用同角的三角函數(shù)關(guān)系式進(jìn)行求解即可.【小問1詳解】∵,,∴點P的坐標(biāo)為(1,3),由三角函數(shù)的定義可得:;【小問2詳解】.17、(1)或;(2);(3)【解析】(1)根據(jù)二次不等式和對數(shù)不等式的解法求解即可得到所求;(2)由可得,故所求范圍即為函數(shù)在區(qū)間上的值域,根據(jù)換元法求出函數(shù)的值域即可;(3)根據(jù)題意可求出,進(jìn)而得到和,于是可得大小關(guān)系【詳解】(1)由,得或,即或,解得,所以原不等式的解集為(2)令,得令,由,得,則,其中令,則在上單調(diào)遞增,所以,即,所以.故實數(shù)的取值范圍為(3)由題意得,即,因此,因為為奇函數(shù),為偶函數(shù),所以,解得,所以,,因此另法:,所以【點睛】(1)本題考查函數(shù)知識的綜合運用,解題時要注意函數(shù)、方程、不等式間的關(guān)系的應(yīng)用,根據(jù)條件及要求合理求解(2)解決函數(shù)零點問題時,可轉(zhuǎn)化為方程解得問題處理,也可利用分離變量的方法求解,轉(zhuǎn)化為求具體函數(shù)值域的問題,解題時注意轉(zhuǎn)化的合理性和等價性18、(1)見解析;(2)見解析【解析】(1)推導(dǎo)出AB∥A1B1,由此能證明AB∥平面A1B1C.(2)推導(dǎo)出BC⊥AB,BC⊥BB1,從而BC⊥平面ABB1A1,由此能證明平面ABB1A1⊥平面A1BC【詳解】證明:(1)在長方體ABCD-A1B1C1D1中,∵AB∥A1B1,且AB?平面A1B1C,A1B1?平面A1B1C,∴AB∥平面A1B1C(2)在長方體ABCD-A1B1C1D1中,∵BC⊥AB,BC⊥BB1,AB∩BB1=B,∴BC⊥平面ABB1A1,∵BC?平面A1BC,∴平面ABB1A1⊥平面A1BC【點睛】本題考查線面平行、面面垂直的證明,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,是基礎(chǔ)題19、(1);(2)最大值為,最小值為..【解析】(1)根據(jù)最小正周期的計算公式求解出的最小正周期;(2)先求解出的取值范圍,然后根據(jù)正弦函數(shù)的單調(diào)性求解出在區(qū)間上的最值.【詳解】(1)因為,所以;(2)因為,所以,當(dāng)時,,此時,當(dāng)時,,此時,故在區(qū)間上的最大值為,最小值為.20、(1)fx=9004x+5【解析】(1)根據(jù)距離為10km時,測算宿舍建造費用為20萬元,可求k的值,由此,可得f(x)的表達(dá)式;(2)fx【詳解】解:(1)由題意可知,距離為10km時,測算宿舍建造費用為20萬元,則20=k4×10+5,解得k(2)因為fx=9004x+5答:宿舍應(yīng)建在離工廠254km處,可使總費用最小,f【點睛】利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方21、(1)證明見解析(2)【解析】(1)通過證明AB⊥CD,AB⊥CC1,證明A1B1⊥平面CDC1,然后證明A1B1⊥C1D;(2)求出底面△DCE的面積,求出對應(yīng)的高,即點到底面DCE的距離,然后求解四面體M-CDE的體積,由三棱錐A﹣MDE的體積就是三棱錐M﹣CDE的體積得結(jié)論.【詳解】(1)證明:∵∠ACB=90°,AC=BC=2,∴AB⊥CD,AB⊥
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 聊城職業(yè)技術(shù)學(xué)院《的分層開發(fā)技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 麗江師范高等專科學(xué)?!豆こ讨茍DⅡ》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西司法警官職業(yè)學(xué)院《學(xué)術(shù)論文寫作(1)》2023-2024學(xué)年第一學(xué)期期末試卷
- 江漢藝術(shù)職業(yè)學(xué)院《健身俱樂部經(jīng)營與管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖北大學(xué)知行學(xué)院《山地戶外運動》2023-2024學(xué)年第一學(xué)期期末試卷
- 自貢職業(yè)技術(shù)學(xué)院《商業(yè)銀行與業(yè)務(wù)經(jīng)營》2023-2024學(xué)年第一學(xué)期期末試卷
- 周口師范學(xué)院《教育歷史與比較研究》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶科技學(xué)院《工程管理軟件與BM技術(shù)應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江樹人學(xué)院《圖像處理軟件應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 長江大學(xué)文理學(xué)院《材料力學(xué)B(外)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024版塑料購銷合同范本買賣
- 【高一上】【期末話收獲 家校話未來】期末家長會
- GB/T 44890-2024行政許可工作規(guī)范
- 有毒有害氣體崗位操作規(guī)程(3篇)
- 兒童常見呼吸系統(tǒng)疾病免疫調(diào)節(jié)劑合理使用專家共識2024(全文)
- 《華潤集團(tuán)全面預(yù)算管理案例研究》
- 2024-2025高考英語全國卷分類匯編之完型填空(含答案及解析)
- 2024年露天煤礦地質(zhì)勘查服務(wù)協(xié)議版
- 兩人退股協(xié)議書范文合伙人簽字
- 2024年資格考試-WSET二級認(rèn)證考試近5年真題附答案
- 二年級下冊加減混合豎式練習(xí)360題附答案
評論
0/150
提交評論