2022屆上海新云臺中學(xué)中考適應(yīng)性考試數(shù)學(xué)試題含解析_第1頁
2022屆上海新云臺中學(xué)中考適應(yīng)性考試數(shù)學(xué)試題含解析_第2頁
2022屆上海新云臺中學(xué)中考適應(yīng)性考試數(shù)學(xué)試題含解析_第3頁
2022屆上海新云臺中學(xué)中考適應(yīng)性考試數(shù)學(xué)試題含解析_第4頁
2022屆上海新云臺中學(xué)中考適應(yīng)性考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022中考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,⊙O的半徑為6,直徑CD過弦EF的中點G,若∠EOD=60°,則弦CF的長等于()A.6 B.6 C.3 D.92.如圖所示的幾何體的俯視圖是()A. B. C. D.3.益陽市高新區(qū)某廠今年新招聘一批員工,他們中不同文化程度的人數(shù)見下表:文化程度高中大專本科碩士博士人數(shù)9172095關(guān)于這組文化程度的人數(shù)數(shù)據(jù),以下說法正確的是:()A.眾數(shù)是20 B.中位數(shù)是17 C.平均數(shù)是12 D.方差是264.下列四個不等式組中,解集在數(shù)軸上表示如圖所示的是()A. B. C. D.5.已知關(guān)于x的一元二次方程3x2+4x﹣5=0,下列說法正確的是()A.方程有兩個相等的實數(shù)根B.方程有兩個不相等的實數(shù)根C.沒有實數(shù)根D.無法確定6.如圖,過點A(4,5)分別作x軸、y軸的平行線,交直線y=﹣x+6于B、C兩點,若函數(shù)y=(x>0)的圖象△ABC的邊有公共點,則k的取值范圍是()A.5≤k≤20 B.8≤k≤20 C.5≤k≤8 D.9≤k≤207.已知a-2b=-2,則4-2a+4b的值是()A.0 B.2 C.4 D.88.已知點A(1﹣2x,x﹣1)在第二象限,則x的取值范圍在數(shù)軸上表示正確的是()A. B.C. D.9.計算的結(jié)果是()A. B. C. D.110.已知拋物線y=(x﹣)(x﹣)(a為正整數(shù))與x軸交于Ma、Na兩點,以MaNa表示這兩點間的距離,則M1N1+M2N2+…+M2018N2018的值是()A. B. C. D.11.如圖是一個由正方體和一個正四棱錐組成的立體圖形,它的主視圖是()A. B. C. D.12.小剛從家去學(xué)校,先勻速步行到車站,等了幾分鐘后坐上了公交車,公交車勻速行駛一段時后到達學(xué)校,小剛從家到學(xué)校行駛路程s(單位:m)與時間r(單位:min)之間函數(shù)關(guān)系的大致圖象是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.某籃球架的側(cè)面示意圖如圖所示,現(xiàn)測得如下數(shù)據(jù):底部支架AB的長為1.74m,后拉桿AE的傾斜角∠EAB=53°,籃板MN到立柱BC的水平距離BH=1.74m,在籃板MN另一側(cè),與籃球架橫伸臂DG等高度處安裝籃筐,已知籃筐到地面的距離GH的標準高度為3.05m.則籃球架橫伸臂DG的長約為_____m(結(jié)果保留一位小數(shù),參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈).14.分解因式:_____.15.《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作,成書于約一千五百年前,其中有首歌謠:“今有竿不知其長,量得影長一丈五尺,立一標桿,長一尺五寸,影長五寸,問竿長幾何?”意思就是:有一根竹竿不知道有多長,量出它在太陽下的影子長一丈五尺,同時立一根一尺五寸的小標桿(如圖所示),它的影長五寸(提示:1丈=10尺,1尺=10寸),則竹竿的長為_____.16.如圖,直線l經(jīng)過⊙O的圓心O,與⊙O交于A、B兩點,點C在⊙O上,∠AOC=30°,點P是直線l上的一個動點(與圓心O不重合),直線CP與⊙O相交于點Q,且PQ=OQ,則滿足條件的∠OCP的大小為_______.17.如果正比例函數(shù)的圖像經(jīng)過第一、三象限,那么的取值范圍是__.18.已知∠=32°,則∠的余角是_____°.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線經(jīng)過A、C兩點,與AB邊交于點D.(1)求拋物線的函數(shù)表達式;(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.①求S關(guān)于m的函數(shù)表達式,并求出m為何值時,S取得最大值;②當S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標;若不存在,請說明理由.20.(6分)如圖所示,點C為線段OB的中點,D為線段OA上一點.連結(jié)AC、BD交于點P.(問題引入)(1)如圖1,若點P為AC的中點,求的值.溫馨提示:過點C作CE∥AO交BD于點E.(探索研究)(2)如圖2,點D為OA上的任意一點(不與點A、O重合),求證:.(問題解決)(3)如圖2,若AO=BO,AO⊥BO,,求tan∠BPC的值.21.(6分)某種商品每天的銷售利潤元,銷售單價元,間滿足函數(shù)關(guān)系式:,其圖象如圖所示.(1)銷售單價為多少元時,該種商品每天的銷售利潤最大?最大利潤為多少元?(2)銷售單價在什么范圍時,該種商品每天的銷售利潤不低于21元?22.(8分)規(guī)定:不相交的兩個函數(shù)圖象在豎直方向上的最短距離為這兩個函數(shù)的“親近距離”(1)求拋物線y=x2﹣2x+3與x軸的“親近距離”;(2)在探究問題:求拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”的過程中,有人提出:過拋物線的頂點向x軸作垂線與直線相交,則該問題的“親近距離”一定是拋物線頂點與交點之間的距離,你同意他的看法嗎?請說明理由.(3)若拋物線y=x2﹣2x+3與拋物線y=+c的“親近距離”為,求c的值.23.(8分)如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為P(2,9),與x軸交于點A,B,與y軸交于點C(0,5).(Ⅰ)求二次函數(shù)的解析式及點A,B的坐標;(Ⅱ)設(shè)點Q在第一象限的拋物線上,若其關(guān)于原點的對稱點Q′也在拋物線上,求點Q的坐標;(Ⅲ)若點M在拋物線上,點N在拋物線的對稱軸上,使得以A,C,M,N為頂點的四邊形是平行四邊形,且AC為其一邊,求點M,N的坐標.24.(10分)(問題情境)張老師給愛好學(xué)習(xí)的小軍和小俊提出這樣的一個問題:如圖1,在△ABC中,AB=AC,點P為邊BC上任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D,E,過點C作CF⊥AB,垂足為F,求證:PD+PE=CF.小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.小俊的證明思路是:如圖2,過點P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.[變式探究]如圖3,當點P在BC延長線上時,其余條件不變,求證:PD﹣PE=CF;請運用上述解答中所積累的經(jīng)驗和方法完成下列兩題:[結(jié)論運用]如圖4,將矩形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;[遷移拓展]圖5是一個航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點,ED⊥AD,EC⊥CB,垂足分別為D、C,且AD?CE=DE?BC,AB=2dm,AD=3dm,BD=dm.M、N分別為AE、BE的中點,連接DM、CN,求△DEM與△CEN的周長之和.25.(10分)下面是小星同學(xué)設(shè)計的“過直線外一點作已知直線的平行線”的尺規(guī)作圖過程:已知:如圖,直線l和直線l外一點A求作:直線AP,使得AP∥l作法:如圖①在直線l上任取一點B(AB與l不垂直),以點A為圓心,AB為半徑作圓,與直線l交于點C.②連接AC,AB,延長BA到點D;③作∠DAC的平分線AP.所以直線AP就是所求作的直線根據(jù)小星同學(xué)設(shè)計的尺規(guī)作圖過程,使用直尺和圓規(guī),補全圖形(保留作圖痕跡)完成下面的證明證明:∵AB=AC,∴∠ABC=∠ACB(填推理的依據(jù))∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(填推理的依據(jù))∴∠DAC=2∠ABC∵AP平分∠DAC,∴∠DAC=2∠DAP∴∠DAP=∠ABC∴AP∥l(填推理的依據(jù))26.(12分)如圖,半圓D的直徑AB=4,線段OA=7,O為原點,點B在數(shù)軸的正半軸上運動,點B在數(shù)軸上所表示的數(shù)為m.當半圓D與數(shù)軸相切時,m=.半圓D與數(shù)軸有兩個公共點,設(shè)另一個公共點是C.①直接寫出m的取值范圍是.②當BC=2時,求△AOB與半圓D的公共部分的面積.當△AOB的內(nèi)心、外心與某一個頂點在同一條直線上時,求tan∠AOB的值.27.(12分)如圖,AD是等腰△ABC底邊BC上的高,點O是AC中點,延長DO到E,使AE∥BC,連接AE.求證:四邊形ADCE是矩形;①若AB=17,BC=16,則四邊形ADCE的面積=.②若AB=10,則BC=時,四邊形ADCE是正方形.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

連接DF,根據(jù)垂徑定理得到,得到∠DCF=∠EOD=30°,根據(jù)圓周角定理、余弦的定義計算即可.【詳解】解:連接DF,∵直徑CD過弦EF的中點G,∴,∴∠DCF=∠EOD=30°,∵CD是⊙O的直徑,

∴∠CFD=90°,

∴CF=CD?cos∠DCF=12×=,故選B.【點睛】本題考查的是垂徑定理的推論、解直角三角形,掌握平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧是解題的關(guān)鍵.2、D【解析】

找到從上面看所得到的圖形即可,注意所有看到的棱都應(yīng)表現(xiàn)在俯視圖中.【詳解】從上往下看,該幾何體的俯視圖與選項D所示視圖一致.故選D.【點睛】本題考查了簡單組合體三視圖的知識,俯視圖是從物體的上面看得到的視圖.3、C【解析】

根據(jù)眾數(shù)、中位數(shù)、平均數(shù)以及方差的概念求解.【詳解】A、這組數(shù)據(jù)中9出現(xiàn)的次數(shù)最多,眾數(shù)為9,故本選項錯誤;B、因為共有5組,所以第3組的人數(shù)為中位數(shù),即9是中位數(shù),故本選項錯誤;C、平均數(shù)==12,故本選項正確;D、方差=[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=,故本選項錯誤.故選C.【點睛】本題考查了中位數(shù)、平均數(shù)、眾數(shù)的知識,解答本題的關(guān)鍵是掌握各知識點的概念.4、D【解析】

此題涉及的知識點是不等式組的表示方法,根據(jù)規(guī)律可得答案.【詳解】由解集在數(shù)軸上的表示可知,該不等式組為,故選D.【點睛】本題重點考查學(xué)生對于在數(shù)軸上表示不等式的解集的掌握程度,不等式組的解集的表示方法:大小小大取中間是解題關(guān)鍵.5、B【解析】試題分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有兩個不相等的實數(shù)根.故答案選B.考點:一元二次方程根的判別式.6、A【解析】若反比例函數(shù)與三角形交于A(4,5),則k=20;若反比例函數(shù)與三角形交于C(4,2),則k=8;若反比例函數(shù)與三角形交于B(1,5),則k=5.故.故選A.7、D【解析】∵a-2b=-2,∴-a+2b=2,∴-2a+4b=4,∴4-2a+4b=4+4=8,故選D.8、B【解析】

先分別求出每一個不等式的解集,再根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集.【詳解】解:根據(jù)題意,得:,解不等式①,得:x>,解不等式②,得:x>1,∴不等式組的解集為x>1,故選:B.【點睛】本題主要考查解一元一次不等式組,關(guān)鍵要掌握解一元一次不等式的方法,牢記確定不等式組解集方法.9、D【解析】

根據(jù)同分母分式的加法法則計算可得結(jié)論.【詳解】===1.故選D.【點睛】本題考查了分式的加減法,解題的關(guān)鍵是掌握同分母分式的加減運算法則.10、C【解析】

代入y=0求出x的值,進而可得出MaNa=-,將其代入M1N1+M2N2+…+M2018N2018中即可求出結(jié)論.【詳解】解:當y=0時,有(x-)(x-)=0,解得:x1=,x2=,∴MaNa=-,∴M1N1+M2N2+…+M2018N2018=1-+-+…+-=1-=.故選C.【點睛】本題考查了拋物線與x軸的交點坐標、二次函數(shù)圖象上點的坐標特征以及規(guī)律型中數(shù)字的變化類,利用二次函數(shù)圖象上點的坐標特征求出MaNa的值是解題的關(guān)鍵.11、A【解析】

對一個物體,在正面進行正投影得到的由前向后觀察物體的視圖,叫做主視圖.【詳解】解:由主視圖的定義可知A選項中的圖形為該立體圖形的主視圖,故選擇A.【點睛】本題考查了三視圖的概念.12、B【解析】【分析】根據(jù)小剛行駛的路程與時間的關(guān)系,確定出圖象即可.【詳解】小剛從家到學(xué)校,先勻速步行到車站,因此S隨時間t的增長而增長,等了幾分鐘后坐上了公交車,因此時間在增加,S不增長,坐上了公交車,公交車沿著公路勻速行駛一段時間后到達學(xué)校,因此S又隨時間t的增長而增長,故選B.【點睛】本題考查了函數(shù)的圖象,認真分析,理解題意,確定出函數(shù)圖象是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.1.【解析】

過點D作DO⊥AH于點O,先證明△ABC∽△AOD得出=,再根據(jù)已知條件求出AO,則OH=AH-AO=DG.【詳解】解:過點D作DO⊥AH于點O,如圖:由題意得CB∥DO,∴△ABC∽△AOD,∴=,∵∠CAB=53°,tan53°=,∴tan∠CAB==,∵AB=1.74m,∴CB=1.31m,∵四邊形DGHO為長方形,∴DO=GH=3.05m,OH=DG,∴=,則AO=1.1875m,∵BH=AB=1.75m,∴AH=3.5m,則OH=AH-AO≈1.1m,∴DG≈1.1m.故答案為1.1.【點睛】本題考查了相似三角形的性質(zhì)與應(yīng)用,解題的關(guān)鍵是熟練的掌握相似三角形的性質(zhì)與應(yīng)用.14、【解析】分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式2后繼續(xù)應(yīng)用完全平方公式分解即可:.15、四丈五尺【解析】

根據(jù)同一時刻物高與影長成正比可得出結(jié)論.【詳解】解:設(shè)竹竿的長度為x尺,∵竹竿的影長=一丈五尺=15尺,標桿長=一尺五寸=1.5尺,影長五寸=0.5尺,∴=,解得x=45(尺).故答案為:四丈五尺.【點睛】本題考查的是相似三角形的應(yīng)用,熟知同一時刻物髙與影長成正比是解答此題的關(guān)鍵.16、40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°17、k>1【解析】

根據(jù)正比例函數(shù)y=(k-1)x的圖象經(jīng)過第一、三象限得出k的取值范圍即可.【詳解】因為正比例函數(shù)y=(k-1)x的圖象經(jīng)過第一、三象限,所以k-1>0,解得:k>1,故答案為:k>1.【點睛】此題考查一次函數(shù)問題,關(guān)鍵是根據(jù)正比例函數(shù)y=(k-1)x的圖象經(jīng)過第一、三象限解答.18、58°【解析】

根據(jù)余角:如果兩個角的和等于90°(直角),就說這兩個角互為余角.即其中一個角是另一個角的余角可得答案.【詳解】解:∠α的余角是:90°-32°=58°.故答案為58°.【點睛】本題考查余角,解題關(guān)鍵是掌握互為余角的兩個角的和為90度.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1);(2)①,當m=5時,S取最大值;②滿足條件的點F共有四個,坐標分別為,,,,【解析】

(1)將A、C兩點坐標代入拋物線y=-x2+bx+c,即可求得拋物線的解析式;

(2)①先用m表示出QE的長度,進而求出三角形的面積S關(guān)于m的函數(shù);

②直接寫出滿足條件的F點的坐標即可,注意不要漏寫.【詳解】解:(1)將A、C兩點坐標代入拋物線,得,解得:,∴拋物線的解析式為y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,過點Q作QE⊥BC與E點,則sin∠ACB===,∴=,∴QE=(10﹣m),∴S=?CP?QE=m×(10﹣m)=﹣m2+3m;②∵S=?CP?QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴當m=5時,S取最大值;在拋物線對稱軸l上存在點F,使△FDQ為直角三角形,∵拋物線的解析式為y=﹣x2+x+8的對稱軸為x=,D的坐標為(3,8),Q(3,4),當∠FDQ=90°時,F(xiàn)1(,8),當∠FQD=90°時,則F2(,4),當∠DFQ=90°時,設(shè)F(,n),則FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F(xiàn)4(,6﹣),滿足條件的點F共有四個,坐標分別為F1(,8),F(xiàn)2(,4),F(xiàn)3(,6+),F(xiàn)4(,6﹣).【點睛】本題考查二次函數(shù)的綜合應(yīng)用能力,其中涉及到的知識點有拋物線的解析式的求法拋物線的最值等知識點,是各地中考的熱點和難點,解題時注意數(shù)形結(jié)合數(shù)學(xué)思想的運用,同學(xué)們要加強訓(xùn)練,屬于中檔題.20、(1);(2)見解析;(3)【解析】

(1)過點C作CE∥OA交BD于點E,即可得△BCE∽△BOD,根據(jù)相似三角形的性質(zhì)可得,再證明△ECP≌△DAP,由此即可求得的值;(2)過點D作DF∥BO交AC于點F,即可得,,由點C為OB的中點可得BC=OC,即可證得;(3)由(2)可知=,設(shè)AD=t,則BO=AO=4t,OD=3t,根據(jù)勾股定理求得BD=5t,即可得PD=t,PB=4t,所以PD=AD,從而得∠A=∠APD=∠BPC,所以tan∠BPC=tan∠A=.【詳解】(1)如圖1,過點C作CE∥OA交BD于點E,∴△BCE∽△BOD,∴=,又BC=BO,∴CE=DO.∵CE∥OA,∴∠ECP=∠DAP,又∠EPC=∠DPA,PA=PC,∴△ECP≌△DAP,∴AD=CE=DO,即=;(2)如圖2,過點D作DF∥BO交AC于點F,則=,=.∵點C為OB的中點,∴BC=OC,∴=;(3)如圖2,∵=,由(2)可知==.設(shè)AD=t,則BO=AO=4t,OD=3t,∵AO⊥BO,即∠AOB=90°,∴BD==5t,∴PD=t,PB=4t,∴PD=AD,∴∠A=∠APD=∠BPC,則tan∠BPC=tan∠A==.【點睛】本題考查了相似三角形的判定與性質(zhì),準確作出輔助線,構(gòu)造相似三角形是解決本題的關(guān)鍵,也是求解的難點.21、(1)10,1;(2).【解析】

(1)將點代入中,求出函數(shù)解析式,再根據(jù)二次函數(shù)的性質(zhì)求出最大值即可;(2)求出對稱軸為直線,可知點關(guān)于對稱軸的對稱點是,再根據(jù)圖象判斷出x的取值范圍即可.【詳解】解:(1)圖象過點,,解得..的頂點坐標為.,∴當時,最大=1.答:該商品的銷售單價為10元時,每天的銷售利潤最大,最大利潤為1元.(2)∵函數(shù)圖象的對稱軸為直線,可知點關(guān)于對稱軸的對稱點是,又∵函數(shù)圖象開口向下,∴當時,.答:銷售單價不少于8元且不超過12元時,該種商品每天的銷售利潤不低于21元.【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式以及二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟悉待定系數(shù)法以及二次函數(shù)的性質(zhì).22、(1)2;(2)不同意他的看法,理由詳見解析;(3)c=1.【解析】

(1)把y=x2﹣2x+3配成頂點式得到拋物線上的點到x軸的最短距離,然后根據(jù)題意解決問題;(2)如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),則PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函數(shù)的性質(zhì)得到拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”,然后對他的看法進行判斷;(3)M點為拋物線y=x2﹣2x+3任意一點,作MN∥y軸交拋物線于N,設(shè)M(t,t2﹣2t+3),則N(t,t2+c),與(2)方法一樣得到MN的最小值為﹣c,從而得到拋物線y=x2﹣2x+3與拋物線的“親近距離”,所以,然后解方程即可.【詳解】(1)∵y=x2﹣2x+3=(x﹣1)2+2,∴拋物線上的點到x軸的最短距離為2,∴拋物線y=x2﹣2x+3與x軸的“親近距離”為:2;(2)不同意他的看法.理由如下:如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,當t=時,PQ有最小值,最小值為,∴拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”為,而過拋物線的頂點向x軸作垂線與直線相交,拋物線頂點與交點之間的距離為2,∴不同意他的看法;(3)M點為拋物線y=x2﹣2x+3任意一點,作MN∥y軸交拋物線于N,設(shè)M(t,t2﹣2t+3),則N(t,t2+c),∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,當t=時,MN有最小值,最小值為﹣c,∴拋物線y=x2﹣2x+3與拋物線的“親近距離”為﹣c,∴,∴c=1.【點睛】本題是二次函數(shù)的綜合題,考查了二次函數(shù)圖象上點的坐標特征和二次函數(shù)的性質(zhì),正確理解新定義是解題的關(guān)鍵.23、(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).【解析】

(1)設(shè)頂點式,再代入C點坐標即可求解解析式,再令y=0可求解A和B點坐標;(2)設(shè)點Q(m,﹣m2+4m+5),則其關(guān)于原點的對稱點Q′(﹣m,m2﹣4m﹣5),再將Q′坐標代入拋物線解析式即可求解m的值,同時注意題干條件“Q在第一象限的拋物線上”;(3)利用平移AC的思路,作MK⊥對稱軸x=2于K,使MK=OC,分M點在對稱軸左邊和右邊兩種情況分類討論即可.【詳解】(Ⅰ)設(shè)二次函數(shù)的解析式為y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,令y=0,得到:x2﹣4x﹣5=0,解得x=﹣1或5,∴A(﹣1,0),B(5,0).(Ⅱ)設(shè)點Q(m,﹣m2+4m+5),則Q′(﹣m,m2﹣4m﹣5).把點Q′坐標代入y=﹣x2+4x+5,得到:m2﹣4m﹣5=﹣m2﹣4m+5,∴m=或(舍棄),∴Q(,).(Ⅲ)如圖,作MK⊥對稱軸x=2于K.①當MK=OA,NK=OC=5時,四邊形ACNM是平行四邊形.∵此時點M的橫坐標為1,∴y=8,∴M(1,8),N(2,13),②當M′K=OA=1,KN′=OC=5時,四邊形ACM′N′是平行四邊形,此時M′的橫坐標為3,可得M′(3,8),N′(2,3).【點睛】本題主要考查了二次函數(shù)的應(yīng)用,第3問中理解通過平移AC可應(yīng)用“一組對邊平行且相等”得到平行四邊形.24、小軍的證明:見解析;小俊的證明:見解析;[變式探究]見解析;[結(jié)論運用]PG+PH的值為1;[遷移拓展](6+2)dm【解析】

小軍的證明:連接AP,利用面積法即可證得;小俊的證明:過點P作PG⊥CF,先證明四邊形PDFG為矩形,再證明△PGC≌△CEP,即可得到答案;[變式探究]小軍的證明思路:連接AP,根據(jù)S△ABC=S△ABP﹣S△ACP,即可得到答案;小俊的證明思路:過點C,作CG⊥DP,先證明四邊形CFDG是矩形,再證明△CGP≌△CEP即可得到答案;[結(jié)論運用]過點E作EQ⊥BC,先根據(jù)矩形的性質(zhì)求出BF,根據(jù)翻折及勾股定理求出DC,證得四邊形EQCD是矩形,得出BE=BF即可得到答案;[遷移拓展]延長AD,BC交于點F,作BH⊥AF,證明△ADE∽△BCE得到FA=FB,設(shè)DH=x,利用勾股定理求出x得到BH=6,再根據(jù)∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點即可得到答案.【詳解】小軍的證明:連接AP,如圖②∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP+S△ACP,∴AB×CF=AB×PD+AC×PE,∵AB=AC,∴CF=PD+PE.小俊的證明:過點P作PG⊥CF,如圖2,∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDG=∠FGP=90°,∴四邊形PDFG為矩形,∴DP=FG,∠DPG=90°,∴∠CGP=90°,∵PE⊥AC,∴∠CEP=90°,∴∠PGC=∠CEP,∵∠BDP=∠DPG=90°,∴PG∥AB,∴∠GPC=∠B,∵AB=AC,∴∠B=∠ACB,∴∠GPC=∠ECP,在△PGC和△CEP中,∴△PGC≌△CEP,∴CG=PE,∴CF=CG+FG=PE+PD;[變式探究]小軍的證明思路:連接AP,如圖③,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP﹣S△ACP,∴AB×CF=AB×PD﹣AC×PE,∵AB=AC,∴CF=PD﹣PE;小俊的證明思路:過點C,作CG⊥DP,如圖③,∵PD⊥AB,CF⊥AB,CG⊥DP,∴∠CFD=∠FDG=∠DGC=90°,∴CF=GD,∠DGC=90°,四邊形CFDG是矩形,∵PE⊥AC,∴∠CEP=90°,∴∠CGP=∠CEP,∵CG⊥DP,AB⊥DP,∴∠CGP=∠BDP=90°,∴CG∥AB,∴∠GCP=∠B,∵AB=AC,∴∠B=∠ACB,∵∠ACB=∠PCE,∴∠GCP=∠ECP,在△CGP和△CEP中,,∴△CGP≌△CEP,∴PG=PE,∴CF=DG=DP﹣PG=DP﹣PE.[結(jié)論運用]如圖④過點E作EQ⊥BC,∵四邊形ABCD是矩形,∴AD=BC,∠C=∠ADC=90°,∵AD=8,CF=3,∴BF=BC﹣CF=AD﹣CF=5,由折疊得DF=BF,∠BEF=∠DEF,∴DF=5,∵∠C=90°,∴DC==1,∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC,∴四邊形EQCD是矩形,∴EQ=DC=1,∵AD∥BC,∴∠DEF=∠EFB,∵∠BEF=∠DEF,∴∠BEF=∠EFB,∴BE=BF,由問題情景中的結(jié)論可得:PG+PH=EQ,∴PG+PH=1.∴PG+PH的值為1.[遷移拓展]延長AD,BC交于點F,作BH⊥AF,如圖⑤,∵AD×CE=DE×BC,∴,∵ED⊥AD,EC⊥CB,∴∠ADE=∠BCE=90°,∴△ADE∽△BCE,∴∠A=∠CBE,∴FA=FB,由問題情景中的結(jié)論可得:ED+EC=BH,設(shè)DH=x,∴AH=AD+DH=3+x,∵BH⊥AF,∴∠BHA=90°,∴BH2=BD2﹣DH2=AB2﹣AH2,∵AB=2,AD=3,BD=,∴()2﹣x2=(2)2﹣(3+x)2,∴x=1,∴BH2=BD2﹣DH2=37﹣1=36,∴BH=6,∴ED+EC=6,∵∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點,∴DM=EM=AE,CN=EN=BE,∴△DEM與△CEN的周長之和=DE+DM+EM+CN+EN+EC=DE+AE+BE+EC=DE+AB+EC=DE+EC+AB=6+2,∴△DEM與△CEN的周長之和(6+2)dm.【點睛】此題是一道綜合題,考查三角形全等的判定及性質(zhì),勾股定理,矩形的性質(zhì)定理,三角形的相似的判定及性質(zhì)定理,翻折的性質(zhì),根據(jù)題中小軍和小俊的思路進行證明,故正確理解題意由此進行后面的證明是解題的關(guān)鍵.25、(1)詳見解析;(2)(等邊對等角),(三角形外角性質(zhì)),(同位角相等,兩直線平行).【解析】

(1)根據(jù)角平分線的尺規(guī)作圖即可得;

(2)分別根據(jù)等腰三角形的性質(zhì)、三角形外角的性質(zhì)和平行線的判定求解可得.【詳解】解:(1)如圖所示,直線AP即為所求.(2)證明:∵AB=AC,∴∠ABC=∠ACB(等邊對等角),∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(三角形外角性質(zhì)),∴∠DAC=2∠ABC,∵AP平分∠DAC,∴∠DAC=2∠DAP,∴∠DAP=∠ABC,∴AP∥l(同位角相等,兩直線平行),故答案為(等邊對等角),(三角形外角性質(zhì)),(同位角相等,兩直線平行).【點睛】本題主要考查作圖能力,解題的關(guān)鍵是掌握角平分線的尺規(guī)作圖、等腰

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論