chapter4-Review-量子力學(xué)英文教案課件_第1頁(yè)
chapter4-Review-量子力學(xué)英文教案課件_第2頁(yè)
chapter4-Review-量子力學(xué)英文教案課件_第3頁(yè)
chapter4-Review-量子力學(xué)英文教案課件_第4頁(yè)
chapter4-Review-量子力學(xué)英文教案課件_第5頁(yè)
已閱讀5頁(yè),還剩83頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

ReviewTheone-dimensionaltime-independentSchrodingerequationTheOne-dimensionalSquareWellPotentialTheOne-DimensionalHarmonicOscillatorTheFiniteSquareBarrierUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?ReviewTheone-dimensionaltimeChapter4DiracNotationandOperatorTechniquesTheOperationRulesofOperatorTheMomentumOperatorsandTheAngularMomentumOperatorsTheEigenvaluesandEigenfunctionsofHermitionOperationTheRelationbetweenOperationandDynamicalQuantitiesDiracNotation§1§5§2§3§4backUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?Chapter4DiracNotationandOTheDefinitionofOperator

TheCharacterofOperatorTheOperationRulesofOperatorbackUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?TheDefinitionofOperatorThewhenanoperatoractsonawavefunctionitproducesanewwavefunction?u=voperator?actsonawavefunctionu,itproducesanewwavefunctionv,?isoperator.1)du/dx=v,d/dxisanoperator.2)xu=v,xisalsoanoperator.AnoperatormustactsonawavefunctionTheDefinitionofOperatorbackUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?whenanoperatoractsonawavlinearityOperator?(c1ψ1+c2ψ2)=c1?ψ1+c2?ψ2EqualOperatorIf?ψ=?ψ,So

?=?forarbitraryfunctionsψbackTheCharacterofOperatorPlusOperator(?+?)ψ=?ψ+?ψ=êψ?+?=êforarbitraryfunctionsψUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?linearityOperatorEqualOperaMultiplyOperator?(?

ψ)=(??)ψ=êψ??=êforarbitraryfunctionsψUsually??

???and?donotcommuteis

ThecommutationrelationsbackInfactthemomentumandpositionoperatorsdonotcommuteisattheheartofquantummechanics.thecanonicalcommutationrelationUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?MultiplyOperator?(?ψ)=(Thesecommutationrelationsareattheheartofquantummechanics.backUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?Thesecommutationrelationsarcommutation

bracketcommutation

bracket[?,?]≡??-??1)[?,?]=-[?,?]2)[?,?+ê]=[?,?]+[?,ê]3)[?,?ê]=[?,?]ê+?[?,ê]4)[?,[?,ê]]+[?,[ê,?]]+[ê,[?,?]]=0ThelastequationisJacobiidenticalequation.backUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?commutationbracketcommutationWhen|x|→∞,ψ,→0ψ、φarearbitraryfunctionsTransposeoperatorsbackUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?When|x|→∞,ψ,→0ψ、φTranspoThehermitianconjugateoperatorsTransposeoperatorsAlsowriteThehermitianconjugateoperators?+:(?

?)+=?+

?+

(?

??...)+=...?+

?+

?+backUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?ThehermitianconjugateoperatThehermitianoperatorsThehermitianoperators:character?+=?,?+=?(?+?)+=?++?+=(?+?)(??)+=?+?+=??≠

??only[?,?]=0,(??)+=??

backUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?ThehermitianoperatorsTheherTheMomentumOperators

ThemomentumoperatorishermitianTheeigenvalueequationofmomentumTheuniverseNormalizableTheAngularMomentumOperators

TheAngularMomentumOperators

TheeigenvalueequationofAngularmomentumThecommutationrelationsofAngularmomentumbackTheMomentumOperatorsandTheAngularMomentumOperatorsUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?TheMomentumOperatorsbackTheTheMomentumOperatorsThemomentumoperatorishermitianTheeigenvalueequationofmomentumProof:When|x|→∞,ψ,→0UniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?TheMomentumOperatorsThemomeI.SolutionsII.NormalizablecoefficientUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?I.SolutionsII.NormalizablxyzAA’oLTheuniverseNormalizableperiodicityboundaryconditionUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?xyzAA’oLTheuniverseNormalizac=L-3/2,WavefunctionsUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?c=L-3/2,WavefunctionsUniverTheAngularMomentumOperatorsTheAngularMomentumOperatorsThecartesiancoordinatesThesquareofAngularMomentumOperatorsTheclassicalangularmomentumcorrespondingquantumoperatorUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?TheAngularMomentumOperatorsxzThesphericalcoordinatesystem.ryThesphericalcoordinateUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?xzThesphericalcoordinatesyThecartesiancomponentsoftheangularmomentumvectorintermsofsphericalcoordinatesyieldingUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?ThecartesiancomponentsUniverTheeigenvalueequationTheeigenvalueequation:LzNormalizablecoefficientUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?TheeigenvalueequationTheeigTheeigenvalueTheeigenfunctionsEqualzeroPeriodicityboundaryconditionUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?TheeigenvalueEqualzeroPeriodTheeigenvalueequation:

L2=(+1),where=0,1,2,...Solution:Ylm(,)UniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?Theeigenvalueequation:L2=Theorthonormalcondition:Thedegeneration

oftheeigenvalue:m:0,±1,±2,±3,...,±(2+1)UniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?Theorthonormalcondition:TheThecommutationrelationsofAngularmomentumProofUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?ThecommutationrelationsofAHomeworksChapter4P127:6,8,

UniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?HomeworksUniversityofElectr

AveragevalueofthehermitianoperatorsTheeigenvalueequationofthehermitianoperatorsTheorthogonalityoftheeigenfunctionsforhermitianoperatorsExampleTheEigenvaluesandEigenfunctionsofHermitionOperationbackUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?AveragevalueofthehermitiaThI:Averagevalueofthehermitianoperatorsmustbereal.Proof:AveragevalueofthehermitianoperatorsUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?ThI:AveragevalueofthehermihermitianoperatorsMustberealTheeigenvalueequationofProof:TheeigenvalueequationofthehermitianoperatorshermitianoperatorsUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?hermitianoperatorsMustbereaThII:TheEigenvaluesofHermitionOperationarealltoberealProofAccordingtheoremI(I)

Allphysicallyobservablequantitiesareassociatedwithhermitianoperators.(II)

Whenthestateisaneigenstateofanoperator,measurementofitsassociatedobservablemustyieldtheeigenvaluebelongingtothateigenstate.UniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?ThII:TheEigenvaluesofHermiTHIII:Theeigenfunctionsareorthonormal,iftheeigenvaluesarenotdegenerate.Proof:Fm≠Fn,1.Theorthonormalconditionforquantumset:2.Theorthonormalconditionforcontinue:TheorthogonalityoftheeigenfunctionsforhermitianoperatorsUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?THIII:TheeigenfunctionsareTheexpectation

valuesofdynamicalquantitiesTheaverageofdynamicalquantities(1)Theeigenfunctionsofdynamicalquantitiesoperationformacompleteset.(2)Theexpectationvalueandprobabilityofthedynamicalquantities(3)

Theconditionfordynamicalquantitieshavecertainvalue

TheRelationbetweenOperationandDynamicalQuantitiesbackExampleUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?Theexpectationvaluesofdyna(1)Theeigenfunctionsofdynamicalquantitiesoperationformacompleteset.Example:Theeigenfunctionsofmomentumoperationformacompleteset.Theexpectation

valuesofdynamicalquantitiesUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?(1)Theeigenfunctionsofdyna(2)TheexpectationvalueandprobabilityofthedynamicalquantitiesUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?(2)TheexpectationvalueandTheconditionfordynamicalquantitieshavecertainvalueλ=λm

λm,|cm|2=1,|c1|2=|c2|2=...=0UniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?TheconditionfordynamicalquTheaverageofdynamicalquantitiesUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?TheaverageofdynamicalquantExample1:find:(1)IsΨtheeigenstateofL2ornot? (2)IsΨtheeigenstateofLz

ornot

? (3)TheaverageofL2

; (4)TheexpectationvalueandprobabilityofL2andLz

Solution:UniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?Example1:find:(1)IsΨthee(3)TheaverageofL2IUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?(3)TheaverageofL2IUniversiII(4)UniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?II(4)UniversityofElectronicExample2:Whent=0,(x)=A[sin2kx+(1/2)coskx]

Findtheaverageofkineticenergyandmomentum.Solution:UniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?Example2:Whent=0,(x)=A[UniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?UniversityofElectronicScien1)theaverageofmomentum2)theaverageofkineticenergyUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?1)theaverageofmomentum2)tHomeworksChapter4P128:11,12,

UniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?HomeworksUniversityofElectrThebasicsimplificationoftheDiracnotationistointroduceanabstractstatethatisaneigenvectorofthepositionoperator.Thatiswherethestate︱x〉iscalledaketanditsconjugateiscalledabra.WerequirethatDiracNotationUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?ThebasicsimplificationofthWecannowdefineawavefunctiontobeUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?WecannowdefineawavefunctReviewTheone-dimensionaltime-independentSchrodingerequationTheOne-dimensionalSquareWellPotentialTheOne-DimensionalHarmonicOscillatorTheFiniteSquareBarrierUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?ReviewTheone-dimensionaltimeChapter4DiracNotationandOperatorTechniquesTheOperationRulesofOperatorTheMomentumOperatorsandTheAngularMomentumOperatorsTheEigenvaluesandEigenfunctionsofHermitionOperationTheRelationbetweenOperationandDynamicalQuantitiesDiracNotation§1§5§2§3§4backUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?Chapter4DiracNotationandOTheDefinitionofOperator

TheCharacterofOperatorTheOperationRulesofOperatorbackUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?TheDefinitionofOperatorThewhenanoperatoractsonawavefunctionitproducesanewwavefunction?u=voperator?actsonawavefunctionu,itproducesanewwavefunctionv,?isoperator.1)du/dx=v,d/dxisanoperator.2)xu=v,xisalsoanoperator.AnoperatormustactsonawavefunctionTheDefinitionofOperatorbackUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?whenanoperatoractsonawavlinearityOperator?(c1ψ1+c2ψ2)=c1?ψ1+c2?ψ2EqualOperatorIf?ψ=?ψ,So

?=?forarbitraryfunctionsψbackTheCharacterofOperatorPlusOperator(?+?)ψ=?ψ+?ψ=êψ?+?=êforarbitraryfunctionsψUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?linearityOperatorEqualOperaMultiplyOperator?(?

ψ)=(??)ψ=êψ??=êforarbitraryfunctionsψUsually??

???and?donotcommuteis

ThecommutationrelationsbackInfactthemomentumandpositionoperatorsdonotcommuteisattheheartofquantummechanics.thecanonicalcommutationrelationUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?MultiplyOperator?(?ψ)=(Thesecommutationrelationsareattheheartofquantummechanics.backUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?Thesecommutationrelationsarcommutation

bracketcommutation

bracket[?,?]≡??-??1)[?,?]=-[?,?]2)[?,?+ê]=[?,?]+[?,ê]3)[?,?ê]=[?,?]ê+?[?,ê]4)[?,[?,ê]]+[?,[ê,?]]+[ê,[?,?]]=0ThelastequationisJacobiidenticalequation.backUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?commutationbracketcommutationWhen|x|→∞,ψ,→0ψ、φarearbitraryfunctionsTransposeoperatorsbackUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?When|x|→∞,ψ,→0ψ、φTranspoThehermitianconjugateoperatorsTransposeoperatorsAlsowriteThehermitianconjugateoperators?+:(?

?)+=?+

?+

(?

??...)+=...?+

?+

?+backUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?ThehermitianconjugateoperatThehermitianoperatorsThehermitianoperators:character?+=?,?+=?(?+?)+=?++?+=(?+?)(??)+=?+?+=??≠

??only[?,?]=0,(??)+=??

backUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?ThehermitianoperatorsTheherTheMomentumOperators

ThemomentumoperatorishermitianTheeigenvalueequationofmomentumTheuniverseNormalizableTheAngularMomentumOperators

TheAngularMomentumOperators

TheeigenvalueequationofAngularmomentumThecommutationrelationsofAngularmomentumbackTheMomentumOperatorsandTheAngularMomentumOperatorsUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?TheMomentumOperatorsbackTheTheMomentumOperatorsThemomentumoperatorishermitianTheeigenvalueequationofmomentumProof:When|x|→∞,ψ,→0UniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?TheMomentumOperatorsThemomeI.SolutionsII.NormalizablecoefficientUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?I.SolutionsII.NormalizablxyzAA’oLTheuniverseNormalizableperiodicityboundaryconditionUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?xyzAA’oLTheuniverseNormalizac=L-3/2,WavefunctionsUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?c=L-3/2,WavefunctionsUniverTheAngularMomentumOperatorsTheAngularMomentumOperatorsThecartesiancoordinatesThesquareofAngularMomentumOperatorsTheclassicalangularmomentumcorrespondingquantumoperatorUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?TheAngularMomentumOperatorsxzThesphericalcoordinatesystem.ryThesphericalcoordinateUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?xzThesphericalcoordinatesyThecartesiancomponentsoftheangularmomentumvectorintermsofsphericalcoordinatesyieldingUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?ThecartesiancomponentsUniverTheeigenvalueequationTheeigenvalueequation:LzNormalizablecoefficientUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?TheeigenvalueequationTheeigTheeigenvalueTheeigenfunctionsEqualzeroPeriodicityboundaryconditionUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?TheeigenvalueEqualzeroPeriodTheeigenvalueequation:

L2=(+1),where=0,1,2,...Solution:Ylm(,)UniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?Theeigenvalueequation:L2=Theorthonormalcondition:Thedegeneration

oftheeigenvalue:m:0,±1,±2,±3,...,±(2+1)UniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?Theorthonormalcondition:TheThecommutationrelationsofAngularmomentumProofUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?ThecommutationrelationsofAHomeworksChapter4P127:6,8,

UniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?HomeworksUniversityofElectr

AveragevalueofthehermitianoperatorsTheeigenvalueequationofthehermitianoperatorsTheorthogonalityoftheeigenfunctionsforhermitianoperatorsExampleTheEigenvaluesandEigenfunctionsofHermitionOperationbackUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?AveragevalueofthehermitiaThI:Averagevalueofthehermitianoperatorsmustbereal.Proof:AveragevalueofthehermitianoperatorsUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?ThI:AveragevalueofthehermihermitianoperatorsMustberealTheeigenvalueequationofProof:TheeigenvalueequationofthehermitianoperatorshermitianoperatorsUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?hermitianoperatorsMustbereaThII:TheEigenvaluesofHermitionOperationarealltoberealProofAccordingtheoremI(I)

Allphysicallyobservablequantitiesareassociatedwithhermitianoperators.(II)

Whenthestateisaneigenstateofanoperator,measurementofitsassociatedobservablemustyieldtheeigenvaluebelongingtothateigenstate.UniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?ThII:TheEigenvaluesofHermiTHIII:Theeigenfunctionsareorthonormal,iftheeigenvaluesarenotdegenerate.Proof:Fm≠Fn,1.Theorthonormalconditionforquantumset:2.Theorthonormalconditionforcontinue:TheorthogonalityoftheeigenfunctionsforhermitianoperatorsUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?THIII:TheeigenfunctionsareTheexpectation

valuesofdynamicalquantitiesTheaverageofdynamicalquantities(1)Theeigenfunctionsofdynamicalquantitiesoperationformacompleteset.(2)Theexpectationvalueandprobabilityofthedynamicalquantities(3)

Theconditionfordynamicalquantitieshavecertainvalue

TheRelationbetweenOperationandDynamicalQuantitiesbackExampleUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?Theexpectationvaluesofdyna(1)Theeigenfunctionsofdynamicalquantitiesoperationformacompleteset.Example:Theeigenfunctionsofmomentumoperationformacompleteset.Theexpectation

valuesofdynamicalquantitiesUniversityofElectronicScienceandTechnologyofChina2005-3-1Prof.ZhangXiaoxia?(1)Theeigenfunctionsofdyna(2)TheexpectationvalueandprobabilityofthedynamicalquantitiesUniversityofElectronicScienceandTechnologyofChina2005-3-1Pr

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論