新人教版數(shù)學(xué)八年級(jí)上冊(cè)教案_第1頁
新人教版數(shù)學(xué)八年級(jí)上冊(cè)教案_第2頁
已閱讀5頁,還剩45頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第11章三角形教材內(nèi)容本章主要內(nèi)容有三角形的有關(guān)線段、角,多邊形及內(nèi)角和,鑲嵌等。三角形的高、中線和角平分線是三角形中的主要線段,與三角形有關(guān)的角有內(nèi)角、外角。教材通過實(shí)驗(yàn)讓學(xué)生了解三角形的穩(wěn)定性,在知道三角形的內(nèi)角和等于1800的基礎(chǔ)上,進(jìn)行推理論證,從而得出三角形外角的性質(zhì)。接著由推廣三角形的有關(guān)概念,介紹了多邊形的有關(guān)概念,利用三角形的有關(guān)性質(zhì)研究了多邊形的內(nèi)角和、外角和公式。這些知識(shí)加深了學(xué)生對(duì)三角形的認(rèn)識(shí),既是學(xué)習(xí)特殊三角形的基礎(chǔ),也是研究其它圖形的基礎(chǔ)。最后結(jié)合實(shí)例研究了鑲嵌的有關(guān)問題,體現(xiàn)了多邊形內(nèi)角和公式在實(shí)際生活中的應(yīng)用.教學(xué)目標(biāo)〔知識(shí)與技能〕12999.com1、理解三角形及有關(guān)概念,會(huì)畫任意三角形的高、中線、角平分線;2、了解三角形的穩(wěn)定性,理解三角形兩邊的和大于第三邊,會(huì)根據(jù)三條線段的長度判斷它們能否構(gòu)成三角形;3、會(huì)證明三角形內(nèi)角和等于1800,了解三角形外角的性質(zhì)。4、了解多邊形的有關(guān)概念,會(huì)運(yùn)用多邊形的內(nèi)角和與外角和公式解決問題。5、理解平面鑲嵌,知道任意一個(gè)三角形、四邊形或正六邊形可以鑲嵌平面,并能運(yùn)用它們進(jìn)行簡(jiǎn)單的平面鑲嵌設(shè)計(jì)。〔過程與方法〕1、在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣;2、在靈活運(yùn)用知識(shí)解決有關(guān)問題的過程中,體驗(yàn)并掌握探索、歸納圖形性質(zhì)的推理方法,進(jìn)一步培說理和進(jìn)行簡(jiǎn)單推理的能力?!睬楦?、態(tài)度與價(jià)值觀〕1、體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心;2、會(huì)應(yīng)用數(shù)學(xué)知識(shí)解決一些簡(jiǎn)單的實(shí)際問題,增強(qiáng)應(yīng)用意識(shí);3、使學(xué)生進(jìn)一步形成數(shù)學(xué)來源于實(shí)踐,反過來又服務(wù)于實(shí)踐的辯證唯物主義觀點(diǎn)。重點(diǎn)難點(diǎn)三角形三邊關(guān)系、內(nèi)角和,多邊形的外角和與內(nèi)角和公式,鑲嵌是重點(diǎn);三角形內(nèi)角和等于1800的證明,根據(jù)三條線段的長度判斷它們能否構(gòu)成三角形及簡(jiǎn)單的平面鑲嵌設(shè)計(jì)是難點(diǎn)。課時(shí)分配與三角形有關(guān)的線段2課時(shí)與三角形有關(guān)的角2課時(shí)多邊形及其內(nèi)角和2課時(shí)本章小結(jié)2課時(shí)那么什么叫做三角形呢二、三角形及有關(guān)概念不在一條直線上那么什么叫做三角形呢二、三角形及有關(guān)概念不在一條直線上的注意:三條線段必組成三角形的線段內(nèi)角,簡(jiǎn)稱角,相鄰兩三角形ABC用符號(hào)c表示,頂點(diǎn)B所對(duì)的三、三角形三邊的探究:[投影7]任意畫一個(gè)△ABC假設(shè)有一只小蟲要從B點(diǎn)出發(fā),沿三角形的邊爬到C,它有幾種路線三角形的邊[教學(xué)目標(biāo)]〔知識(shí)與技能〕1了解三角形的意義,認(rèn)識(shí)三角形的邊、內(nèi)角、頂點(diǎn),能用符號(hào)語言表示三角形;2理解三角形三邊不等的關(guān)系,會(huì)判斷三條線段能否構(gòu)成一個(gè)三角形,并能運(yùn)用它解決有關(guān)的問題〔過程與方法〕在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣;〔情感、態(tài)度與價(jià)值觀〕體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心[重點(diǎn)難點(diǎn)]三角形的有關(guān)概念和符號(hào)表示,三角形三邊間的不等關(guān)系是重點(diǎn);用三角形三邊不等關(guān)系判定三條線段可否組成三角形是難點(diǎn)。[教學(xué)過程]一、情景導(dǎo)入三角形是一種最常見的幾何圖形,[投影1-6]如古埃及金字塔,香港中銀大廈,交通標(biāo)志,等等,處處都有三角形的形象。三條線段首尾順次相接組成的圖形叫做三角形。須①不在一條直線上,②首尾順次相接。叫做三角形的邊,相鄰兩邊所組成的角叫做三角形的邊的公共端點(diǎn)是三角形的頂點(diǎn)。表示為△ABC三角形ABC的頂點(diǎn)C所對(duì)的邊AB可用邊AC可用b表示,頂點(diǎn)A所對(duì)的邊BC可用a表示.不等關(guān)系可以選擇各條路線的長一樣嗎為什么有兩條路線:(1)從BtC,(2)從BtAtC;不一樣,AB+AC>BC①;因?yàn)閮牲c(diǎn)之間線段最短。同樣地有AC+BC>AB②AB+BC>AC③由式子①②③我們可以知道什么三角形的任意兩邊之和大于第三邊?四、三角形的分類我們知道,三角形按角可分為銳角三角形、鈍角三角形、直角三角形,我們把銳角三角形、鈍角三角形統(tǒng)稱為斜三角形。按角分類:三角形直角三角形三角形斜三角形銳角三角形鈍角三角形頂角那么三角形按邊如何進(jìn)行分類呢請(qǐng)你按“有幾條邊相等”將三角形分類。三邊都相等的三角形叫做等邊三角形;有兩條邊相等的三角形叫做等腰三角形;三邊都不相等的三角形叫做不等邊三角形。頂角底角底邊底角

底角底邊底角顯然,等邊三角形是特殊的等腰三角形。按邊分類:三角形不等邊三角形等腰三角形底和腰不等的等腰三角形等邊三角形五、例題2倍,那么各邊的長是多2)邊長為4cm”2倍,那么各邊的長是多2)邊長為4cm”是什么4cm的等腰三角形。少(2)能圍成有一邊長為4cm的等腰三角形嗎為什么分析:(1)等腰三角形三邊的長是多少若設(shè)底邊長為xcm,則腰長是多少(意思解:(1)設(shè)底邊長為xcm,則腰長2xcm。x+2x+2x=18解得x=所以,三邊長分別為cm,cm,cm.(2)如果長為4cm的邊為底邊,設(shè)腰長為xcm,則4+2x=18解得x=7如果長為4cm的邊為腰,設(shè)底邊長為xcm,則2X4+x=18解得x=10因?yàn)?+4V10,出現(xiàn)兩邊的和小于第三邊的情況,所以不能圍成腰長是由以上討論可知,可以圍成底邊長是4cm的等腰三角形。五、課堂練習(xí)課本4頁練習(xí)1、2題。六、課堂小結(jié)1、三角形及有關(guān)概念;2、三角形的分類;3、三角形三邊的不等關(guān)系及應(yīng)用。作業(yè):課本8頁1、2、6;教后記三角形的高、中線與角平分線教學(xué)目標(biāo)〕知識(shí)與技能〕1、經(jīng)歷畫圖的過程,認(rèn)識(shí)三角形的高、中線與角平分線;2、會(huì)畫三角形的高、中線與角平分線;3、了解三角形的三條高所在的直線,三條中線,三條角平分線分別交于一點(diǎn).〔過程與方法〕在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣〔情感、態(tài)度與價(jià)值觀〕體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心〔重點(diǎn)難點(diǎn)〕三角形的高、中線與角平分線是重點(diǎn);三角形的角平分線與角的平分線的區(qū)別,畫鈍角三角形的高是難點(diǎn).〔教學(xué)過程〕一、導(dǎo)入新課我們已經(jīng)知道什么是三角形,也學(xué)過三角形的高。三角形的主要線段除高外,還有中線和角平分線值得我們研究。二、三角形的高請(qǐng)你在圖中畫出厶ABC的一條高并說說你畫法。從厶ABC的頂點(diǎn)A向它所對(duì)的邊BC所在的直線畫垂線,垂足為D,所得線段AD叫做△ABC的邊BC上的高,表示為AD丄BC于點(diǎn)Do注意:高與垂線不同,高是線段,垂線是直線。請(qǐng)你再畫出這個(gè)三角形AB、AC邊上的高,看看有什么發(fā)現(xiàn)三角形的三條高相交于一點(diǎn)。如果△ABC是直角三角形、鈍角三角形,上面的結(jié)論還成立嗎顯然,上面的結(jié)論成立。請(qǐng)你畫一個(gè)直角三角形,再畫出它三邊上的高。上面的結(jié)論還成立。三、三角形的中線如圖,我們把連結(jié)△ABC的頂點(diǎn)A和它的對(duì)邊BC的中點(diǎn)D,所得線段AD叫做△ABC的邊BC上的中線,表示為BD=DC或BD=DC=1/2BC或2BD=2DC=BC.請(qǐng)你在圖中畫出厶ABC的另兩條邊上的中線,看看有什么發(fā)現(xiàn)三角的三條中線相交于一點(diǎn)。如果三角形是直角三角形、鈍角三角形,上面的結(jié)論還成立嗎請(qǐng)畫圖回答。上面的結(jié)論還成立。四、三角形的角平分線如圖,畫/A的平分線AD,交/A所對(duì)的邊BC于點(diǎn)D,所得線段AD叫做△ABC的角平分線,表示為/BAD玄CAD或/BAD玄CAD-1/2/BAC或2/BAD=2/CAD-ZBAC思考:三角形的角平分線與角的平分線是一樣的嗎三角形的角平分線是線段,而角的平分線是射線,是不一樣的。請(qǐng)你在圖中再畫出另兩個(gè)角的平分線,看看有什么發(fā)現(xiàn)三角形三個(gè)角的平分線相交于一點(diǎn)。如果三角形是直角三角形、鈍角三角形,上面的結(jié)論還成立嗎請(qǐng)畫圖回答。上面的結(jié)論還成立。想一想:三角形的三條高、三條中線、三條角平分線的交點(diǎn)有什么不同三角形的三條中線的交點(diǎn)、三條角平分線的交點(diǎn)在三角形的內(nèi)部,而銳三角形的三條高的交點(diǎn)在三角形的內(nèi)部,直角三角形三條高的交戰(zhàn)在角直角頂點(diǎn),鈍角三角形的三條高的交點(diǎn)在三角形的外部。五、課堂練習(xí)課本5頁練習(xí)1、2題。六、課堂小結(jié)1、三角形的高、中線、角平分線的概念和畫法。2、三角形的三條高、三條中線、三條角平分線及交點(diǎn)的位置規(guī)律。七作業(yè):課本8頁3、4;八、教后記三角形的穩(wěn)定性[教學(xué)目標(biāo)]知識(shí)與技能〕2、了解三角形的穩(wěn)定性在生產(chǎn)、生活中的應(yīng)用。1、2、了解三角形的穩(wěn)定性在生產(chǎn)、生活中的應(yīng)用。〔過程與方法〕在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣〔情感、態(tài)度與價(jià)值觀〕體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心[重點(diǎn)難點(diǎn)]三角形穩(wěn)定性及應(yīng)用。[教學(xué)過程]一、情景導(dǎo)入蓋房子時(shí),在窗框未安裝之前,木工師傅常常先在窗框上斜釘一根木條,為什么要這樣做呢二、三角形的穩(wěn)定性〔實(shí)驗(yàn)〕1、把三根木條用釘子釘成一個(gè)三角形木架,然后扭動(dòng)它,它的形狀會(huì)改變嗎(2)不會(huì)改變。2、把四根木條用釘子釘成一個(gè)四邊形木架,然后扭動(dòng)它,它的形狀會(huì)改變嗎會(huì)改變。3、在四邊形的木架上再釘一根木條,將它的一對(duì)頂點(diǎn)連接起來,然后扭動(dòng)它,它的形狀會(huì)改變嗎不會(huì)改變。從上面的實(shí)驗(yàn)中,你能得出什么結(jié)論三角形具有穩(wěn)定性,而四邊形不具有穩(wěn)定性。三、三角形穩(wěn)定性和四邊形不穩(wěn)定的應(yīng)用三角形具有穩(wěn)定性固然好,四邊形不具有穩(wěn)定性也未必不好,它們?cè)谏a(chǎn)和生活中都有廣泛的應(yīng)用。如:鋼架橋、屋頂鋼架和起重機(jī)都是利用三角形的穩(wěn)定性,活動(dòng)掛架則是利用四邊形的不穩(wěn)定性。你還能舉出一些例子嗎四、課堂練習(xí)1、下列圖形中具有穩(wěn)定性的是()A正方形B長方形C直角三角形D平行四邊形2、要使下列木架穩(wěn)定各至少需要多少根木棍3、課本7頁練習(xí)。五作業(yè):8頁5;9頁10題。六、教后記三角形的內(nèi)角[教學(xué)目標(biāo)]〔知識(shí)與技能〕掌握三角形內(nèi)角和定理?!策^程與方法〕在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣〔情感、態(tài)度與價(jià)值觀〕體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心[重點(diǎn)難點(diǎn)]三角形內(nèi)角和定理是重點(diǎn);三角形內(nèi)角和定理的證明是難點(diǎn)。[教學(xué)過程]一、導(dǎo)入新課我們?cè)谛W(xué)就知道三角形內(nèi)角和等于1800,這個(gè)結(jié)論是通過實(shí)驗(yàn)得到的,這個(gè)命題是不是真命題還需要證明,怎樣證明呢二、三角形內(nèi)角和的證明回顧我們小學(xué)做過的實(shí)驗(yàn),你是怎樣操作的把一個(gè)三角形的兩個(gè)角剪下拼在第三個(gè)角的頂點(diǎn)處,用量角器量出/BCD勺度數(shù),可得到/A+ZB+ZACB=180。[投影1]圖1想一想,還可以怎樣拼剪下ZA,按圖(2)拼在一起,可得到ZA+ZB+ZACB=180。圖2把和剪下按圖(3)拼在一起,可得到ZA+ZB+ZACB=180。如果把上面移動(dòng)勺角在圖上進(jìn)行轉(zhuǎn)移,由圖1你能想到證明三角形內(nèi)角和等于1800勺方法嗎已知△ABC求證:ZA+ZB+ZC=18(J。證明一過點(diǎn)C作CM/AB則ZA=ZACMZB=ZDCM又ZACB+ZACMZDCM=180???ZA+ZB+ZACB=180。即:三角形勺內(nèi)角和等于1800。由圖2、圖3你又能想到什么證明方法請(qǐng)說說證明過程。三、例題例如圖,C島在A島的北偏東500方向,B島在A島的北偏東800方向,C島在B島的北偏西40°方向,從C島看AB兩島的視角ZACB是多少度分析:怎樣能求出ZACB的度數(shù)根據(jù)三角形內(nèi)角和定理,只需求出ZCAB和ZCBA的度數(shù)即可。ZCAB等于多少度怎樣求ZCBA的度數(shù)解:ZCBA玄BAD-ZCAD=8b50°=300?/AD//BE???/BAD+ZABE=18(°?ZABE=1800-ZBAD=1800-800=1000?ZABC=ZABE-ZEBC=1000-400=600?ZACB=1800-ZABC-ZCAB==900答:從C島看AB兩島的視角ZACB=180是900。四、課堂練習(xí)課本13頁1、2題。五作業(yè):16頁1、3、4;六、教后記三角形的外角[教學(xué)目標(biāo)]〔知識(shí)與技能〕理解三角形的外角;2、掌握三角形外角的性質(zhì),能利用三角形外角的性質(zhì)解決問題。〔過程與方法〕在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣〔情感、態(tài)度與價(jià)值觀〕體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心[重點(diǎn)難點(diǎn)]三角形的外角和三角形外角的性質(zhì)是重點(diǎn);理解三角形的外角是難點(diǎn)。[教學(xué)過程]一、導(dǎo)入新課〔投影1〕如圖,△ABC的三個(gè)內(nèi)角是什么它們有什么關(guān)系是/A、/B、/C,它們的和是1800。若延長BC至D,則/ACD是什么角這個(gè)角與厶ABC的三個(gè)內(nèi)角有什么關(guān)系二、三角形外角的概念/ACD叫做厶ABC的外角。也就是,三角形一邊與另一邊的延長線組成的角,叫做三角形的外角。想一想,三角形的外角共有幾個(gè)共有六個(gè)。注意:每個(gè)頂點(diǎn)處有兩個(gè)外角,它們是對(duì)頂角。研究與三角形外角有關(guān)的問題時(shí),通常每個(gè)頂點(diǎn)處取一個(gè)外角.三、三角形外角的性質(zhì)容易知道,三角形的外角/ACD與相鄰的內(nèi)角/ACB是鄰補(bǔ)角,那與另外兩個(gè)角有怎樣的數(shù)量關(guān)系呢〔投影2〕如圖,這是我們證明三角形內(nèi)角和定理時(shí)畫的輔助線,你能就此圖說明/ACD與/A、/B的關(guān)系嗎?/CE//AB,???/A=/1,/B=/2又/ACD=/1+/2?/ACD=/A+/B你能用文字語言敘述這個(gè)結(jié)論嗎三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角之和。由加數(shù)與和的關(guān)系你還能知道什么三角形的一個(gè)外角大于與它不相鄰的任何一個(gè)內(nèi)角。即,。四、例題〔投影3〕例如圖,/1、/2、/3是三角形ABC的三個(gè)外角,它們的和是多少分析:/1與/BAC/2與/ABC/3與/ACB有什么關(guān)系/BACABC/ACB有什么關(guān)系解:???/1+/BAC=180J,/2+/ABC=180°,/3+/ACB=180,???/1+/BAC+Z2+/ABC+Z3+/ACB=540又/BAC+/ABC+/ACB=1800?/1+/2+/3==3600。你能用語言敘述本例的結(jié)論嗎三角形外角的和等于3600。課堂練習(xí)課本15頁練習(xí);課堂小結(jié)什么是三角形外角三角形的外角有哪些性質(zhì)作業(yè):課本12頁56;教后記11.3.1多邊形[教學(xué)目標(biāo)]〔知識(shí)與技能〕1、了解多邊形及有關(guān)概念,理解正多邊形的概念.2、區(qū)別凸多邊形與凹多邊形.〔過程與方法〕在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣〔情感、態(tài)度與價(jià)值觀〕體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心[重點(diǎn)難點(diǎn)]多邊形及有關(guān)概念、正多邊形的概念是重點(diǎn);區(qū)別凸多邊形與凹多邊形是難點(diǎn)。[教學(xué)過程]一、情景導(dǎo)入[投影1]看下面的圖片,你能從中找出由一些線段圍成的圖形嗎二、多邊形及有關(guān)概念這些圖形有什么特點(diǎn)由幾條線段組成;它們不在同一條直線上;首尾順次相接.這種在平面內(nèi),由一些不在同一條直線上的線段首尾順次相接組成的圖形叫做多邊形。多邊形按組成它的線段的條數(shù)分成三角形、四邊形、五邊形……、n邊形。這就是說,一個(gè)多邊形由幾條線段組成,就叫做幾邊形,三角形是最簡(jiǎn)單的多邊形。與三角形類似地,多邊形相鄰兩邊組成的角叫做多邊形的內(nèi)角,如圖中的/A/B/C、/D、/E。多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角.如圖中的/1是五邊形ABCDE勺一個(gè)外角。[投影2]連接多邊形的不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線.四邊形有幾條對(duì)角線五邊形有幾條對(duì)角線畫圖看看。你能猜想n邊形有多少條對(duì)角線嗎說說你的想法。n邊形有1/2n(n—3)條對(duì)角線。因?yàn)閺膎邊形的一個(gè)頂點(diǎn)可以引n—3條對(duì)角線,n個(gè)頂點(diǎn)共引n(n—3)條對(duì)角線,又由于連接任意兩個(gè)頂點(diǎn)的兩條對(duì)角線是相同的,所以,n邊形有1/2n(n—3)條對(duì)角線。三、凸多邊形和凹多邊形[投影3]如圖,下面的兩個(gè)多邊形有什么不同在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個(gè)圖形都在這條直線的同一側(cè),這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因?yàn)槲覀儺婤D所在直線,整個(gè)多邊形不都在這條直線的同一側(cè),我們稱它為凹多邊形。注意:今后我們討論的多邊形指的都是凸多邊形.四、正多邊形的概念我們知道,等邊三角形、正方形的各個(gè)角都相等,各條邊都相等,像這樣各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。[投影4]下面是正多邊形的一些例子。五、課堂練習(xí)課本21頁練習(xí)1、2。3、有五個(gè)人在告別的時(shí)候相互各握了一次手,他們共握了多少次手你能找到一個(gè)幾何模型來說明嗎六、課堂小結(jié)、多邊形及有關(guān)概念。2、區(qū)別凸多邊形和凹多邊形。3、正多邊形的概念。4、n邊形對(duì)角線有1/2n(n—3)條。七、作業(yè):課本24頁1。八、教后記11.3.2多邊形的內(nèi)角和[教學(xué)目標(biāo)]〔知識(shí)與技能〕1、了解多邊形的內(nèi)角、外角等概念;2、2、能通過不同方法探索多邊形的內(nèi)角和與外角和公式,并會(huì)應(yīng)用它們進(jìn)行有關(guān)計(jì)算.〔過程與方法〕在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣〔情感、態(tài)度與價(jià)值觀〕體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心[重點(diǎn)難點(diǎn)]多邊形的內(nèi)角和與多邊形的外角和公式是重點(diǎn);多邊形的內(nèi)角和定理的推導(dǎo)是難點(diǎn)。[教學(xué)過程]一、復(fù)習(xí)導(dǎo)入我們已經(jīng)證明了三角形的內(nèi)角和為180°,在小學(xué)我們用量角器量過四邊形的內(nèi)角的度數(shù),知道四邊形內(nèi)角的和為360°,現(xiàn)在你能利用三角形的內(nèi)角和定理證明嗎二、多邊形的內(nèi)角和〔投影1〕如圖,從四邊形的一個(gè)頂點(diǎn)出發(fā)可以引幾條對(duì)角線它們將四邊形分成幾個(gè)三角形那么四邊形的內(nèi)角和等于多少度AA可以引一條對(duì)角線;它將四邊形分成兩個(gè)三角形;因此,四邊形的內(nèi)角和內(nèi)角和可以引一條對(duì)角線;它將四邊形分成兩個(gè)三角形;因此,四邊形的內(nèi)角和內(nèi)角和=2X180°=360°。類似地,你能知道五邊形、六邊形…〔投影2〕觀察下面的圖形,填空:n邊形的內(nèi)角和是多少度嗎=△ABD的內(nèi)角和+△BDC的六邊形對(duì)角線,從五邊形一個(gè)頂點(diǎn)出發(fā)可以引于;從六邊形一個(gè)頂點(diǎn)出發(fā)可以引于;〔投影3〕從n六邊形對(duì)角線,從五邊形一個(gè)頂點(diǎn)出發(fā)可以引于;從六邊形一個(gè)頂點(diǎn)出發(fā)可以引于;〔投影3〕從n邊形一個(gè)頂點(diǎn)出發(fā),可以引和等于。n邊形的內(nèi)角和等于(n—2)?180°.從上面的討論我們知道,求n邊形的內(nèi)角和可以將n邊形分成若干個(gè)三角形來求。現(xiàn)在以五邊形為例,你還有其它的分法嗎分法一〔投影3〕如圖1,在五邊形ABCDE內(nèi)任取一點(diǎn)O,連結(jié)OAOBOCODOE則得五個(gè)三角形。???五邊形的內(nèi)角和為5X180°一2X180°=(5—2)X180°=540°。它們將五邊形分成三角形,五邊形的內(nèi)角和等對(duì)角線,它們將六邊形分成對(duì)角線,它們將三角形,六邊形的內(nèi)角和等n邊形分成三角形,n邊形的內(nèi)角圖1圖2分法二〔投影4〕如圖2,在邊AB上取一點(diǎn)O,連OEODOC則可以(5—1)個(gè)三角形。?五邊形的內(nèi)角和為(5—1)X180°—180°=(5—2)X180°如果把五邊形換成n邊形,用同樣的方法可以得到n邊形內(nèi)角和=(n—2)x180°.三、例題〔投影6〕例1如果一個(gè)四邊形的一組對(duì)角互補(bǔ),那么另一組對(duì)角有什么關(guān)系如圖,已知四邊形ABCD中,/A+ZC=180°,求/B與/D的關(guān)系.分析:ZIA、ZBZC、ZD有什么關(guān)系解:Tz/A+ZB+ZC+ZD=(4—2)x180°=360°又/A+ZC=180°?ZB+ZD=360°—(ZA+ZC)=180°這就是說,如果四邊形一組對(duì)角互補(bǔ),那么另一組對(duì)角也互補(bǔ).〔投影7〕例2如圖,在六邊形的每個(gè)頂點(diǎn)處各取一個(gè)外角,這些外角的和叫做六邊形的外角和.六邊形的外角和等于多少如圖,已知Z1,Z2,Z3,Z4,Z5,Z6分別為六邊形ABCDEF的外角,求Z1+Z2+Z3+Z4+Z5+/6的值.分析:多邊形的一個(gè)外角同與它相鄰的內(nèi)角有什么關(guān)系六邊形的內(nèi)角和是多少度解:???/1+ZBAF=180/2+ZABC=180/3+/BAD=180/4+/CDE=180/5+/DEF=180/6+/EFA=180???/1+/BAF+Z2+/ABC+Z3+/BAD+/4+/CDE+/5+/DEF+/6+/EFA=6X180°又/1+/2+/3+/4+/5+/6=4X180°?/BAF+/ABC+ZBAD+ZCDE/DEF+/EFA=6X180°-4X180°=360°這就是說,六邊形形的外角和為360°。如果把六邊形換成n邊形可以得到同樣的結(jié)果:n邊形的外角和等于360°。對(duì)此,我們也可以這樣來理解?!餐队?〕如圖,從多邊形的一個(gè)頂點(diǎn)A出發(fā),沿多邊形各邊走過各頂點(diǎn),再回到A點(diǎn),然后轉(zhuǎn)向出發(fā)時(shí)的方向,在行程中所轉(zhuǎn)的各個(gè)角的和就是多邊形的外角和,由于走了一周,所得的各個(gè)角的和等于一個(gè)周角,所以多邊形的外角和等于360°.四、課堂練習(xí)課本24頁1、2、3題。五、課堂小結(jié)n邊形的內(nèi)角和是多少度n邊形的外角和是多少度六、作業(yè):課本24頁2、3;七、教后記本章小結(jié)、知識(shí)結(jié)構(gòu)

二、回顧與思考1、什么是三角形什么是多邊形什么是正多邊形三角形是不是多邊形2、什么是三角形的高、中線、角平分線什么是對(duì)角線三角形有對(duì)角線嗎n邊形的的對(duì)角線有多少條3、三角形的三條高,三條中線,三條角平分線各有什么特點(diǎn)4、三角形的內(nèi)角和是多少n邊形的內(nèi)角和是多少你能用三角形的內(nèi)角和說明n邊形的內(nèi)角和嗎5、三角形的外角和是多少n邊形的外角和是多少你能說明為什么多邊形的外角和與邊數(shù)無關(guān)嗎6、怎樣才算是平面鑲嵌平面鑲嵌的條件是什么能單獨(dú)進(jìn)行平面鑲嵌的多邊形有哪些你能舉一個(gè)幾個(gè)多邊形進(jìn)行平面鑲嵌的例子嗎三、例題導(dǎo)引例1如圖,在△ABC中,/A:/B:/C=3:4:5,BDCE分別是邊ACAB上的高,BDCE相交于點(diǎn)H,求/BHC的度數(shù)。例2如圖,把△ABC沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCDE內(nèi)部時(shí),探索/A與/1+/2有什么數(shù)量關(guān)系并說明理由。12例3如圖所示,在厶ABC中,△ABC的內(nèi)角平分線與外角平分線交于點(diǎn)P,試說明/P=1/2/A.四、鞏固練習(xí)課本28—29頁復(fù)習(xí)題7(第3題可不做)五、教后記第十二章全等三角形單元要點(diǎn)分析教學(xué)內(nèi)容本章的主要內(nèi)容是全等三角形.主要學(xué)習(xí)全等三角形的性質(zhì)以及探索判定三角形全等的方法,并學(xué)會(huì)怎樣應(yīng)用全等三角形進(jìn)行證明,本章劃分為三個(gè)小節(jié),第一節(jié)學(xué)習(xí)三角形全等的概念、性質(zhì);第二節(jié)學(xué)習(xí)三角形全等的判定方法和直角三角形全等的特殊判定方法;第三節(jié)利用三角形全等證明角的平分線的性質(zhì),會(huì)利用角的平分線的性質(zhì)進(jìn)行證明.教材分析教材力求創(chuàng)設(shè)現(xiàn)實(shí)、有趣的問題情境,使學(xué)生經(jīng)歷從現(xiàn)實(shí)活動(dòng)中抽象出幾何模型和運(yùn)用所學(xué)內(nèi)容解決實(shí)際問題的過程.在內(nèi)容呈現(xiàn)上,把研究三角形全等條件的重點(diǎn)放在第一個(gè)條件上,通過“邊邊邊”條件探索什么是三角形的判定,如何判定,怎樣進(jìn)行推理論證,怎樣正確地表達(dá)證明過程.學(xué)生開始學(xué)習(xí)三角形判定定理時(shí)的困難在于定理的證明,而這些推理證明并不要求學(xué)生掌握.為了突出判定方法這條主渠道,教材都作為基本事實(shí)提出來,在畫圖、實(shí)驗(yàn)中讓學(xué)生知道它們的正確性就可以了.在“角的平分線的性質(zhì)”一節(jié)中的兩個(gè)互逆定理,只要求學(xué)生了解其條件與結(jié)論之間的關(guān)系,不必介紹互逆命題、互逆定理等內(nèi)容,這將在“勾股定理”中介紹.三維目標(biāo).知識(shí)與技能在探索全等三角形的性質(zhì)與判定中,提高認(rèn)知水平,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)..過程與方法經(jīng)歷探索三角形全等的判定的,發(fā)展空間觀念和有條理的表達(dá)能力,掌握兩個(gè)三角形全等的判定并應(yīng)用于實(shí)際之中..情感、態(tài)度與價(jià)值觀培養(yǎng)良好的觀察、操作、想象、推理能力,感悟幾何學(xué)的內(nèi)涵.重、難點(diǎn)與關(guān)鍵.重點(diǎn):使學(xué)生理解證明的基本過程,掌握用綜合法證明的格式..難點(diǎn):領(lǐng)會(huì)證明的分析思路,學(xué)會(huì)運(yùn)用綜合法證明的格式..關(guān)鍵:突出三角形全等的判定方法這條主線,淡化對(duì)定理的證明.教學(xué)建議.注意使學(xué)生經(jīng)歷探索三角形性質(zhì)及三角形全等的判定的過程.?在教學(xué)中鼓勵(lì)學(xué)生觀察、操作、推理,運(yùn)用多種方式探索三角形有關(guān)性質(zhì)..注重創(chuàng)設(shè)具有現(xiàn)實(shí)性、趣味性和挑戰(zhàn)性的情境,體現(xiàn)三角形的廣泛應(yīng)用..注意直觀操作與說理的結(jié)合,逐步培養(yǎng)學(xué)生有條理的思考和表達(dá).課時(shí)劃分本單元共分成9課時(shí).12.1全等三角形1課時(shí)12.2三角形全等的性質(zhì)5課時(shí)12.3角的平分線的性質(zhì)2課時(shí)復(fù)習(xí)與交流1課時(shí)全等三角形教學(xué)內(nèi)容本節(jié)課主要介紹全等三角形的概念和性質(zhì).教學(xué)目標(biāo).知識(shí)與技能領(lǐng)會(huì)全等三角形對(duì)應(yīng)邊和對(duì)應(yīng)角相等的有關(guān)概念..過程與方法經(jīng)歷探索全等三角形性質(zhì)的過程,能在全等三角形中正確找出對(duì)應(yīng)邊、對(duì)應(yīng)角..情感、態(tài)度與價(jià)值觀培養(yǎng)觀察、操作、分析能力,體會(huì)全等三角形的應(yīng)用價(jià)值.重、難點(diǎn)與關(guān)鍵.重點(diǎn):會(huì)確定全等三角形的對(duì)應(yīng)元素..難點(diǎn):掌握找對(duì)應(yīng)邊、對(duì)應(yīng)角的方法..關(guān)鍵:找對(duì)應(yīng)邊、對(duì)應(yīng)角有下面兩種方法:(1)全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊,兩個(gè)對(duì)應(yīng)角所夾的邊是對(duì)應(yīng)邊;(2)對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角,?兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角.教具準(zhǔn)備四張大小一樣的紙片、直尺、剪刀.教學(xué)方法采用“直觀——感悟”的教學(xué)方法,讓學(xué)生自己舉出形狀、大小相同的實(shí)例,加深認(rèn)識(shí).教學(xué)過程一、動(dòng)手操作,導(dǎo)入課題.先在其中一張紙上畫出任意一個(gè)多邊形,再用剪刀剪下,?思考得到的圖形有何特點(diǎn).重新在一張紙板上畫出任意一個(gè)三角形,再用剪刀剪下,?思考得到的圖形有何特點(diǎn)【學(xué)生活動(dòng)】動(dòng)手操作、用腦思考、與同伴討論,得出結(jié)論.【教師活動(dòng)】指導(dǎo)學(xué)生用剪刀剪出重疊的兩個(gè)多邊形和三角形.學(xué)生在操作過程中,教師要讓學(xué)生事先在紙上畫出三角形,然后固定重疊的兩張紙,注意整個(gè)過程要細(xì)心.【互動(dòng)交流】剪出的多邊形和三角形,可以看出:形狀、大小相同,能夠完全重合.這樣的兩個(gè)圖形叫做全等形,用“也”表示.概念:能夠完全重合的兩個(gè)三角形叫做全等三角形.【教師活動(dòng)】在紙版上任意剪下一個(gè)三角形,要求學(xué)生手拿一個(gè)三角形,做如下運(yùn)動(dòng):平移、翻折、旋轉(zhuǎn),觀察其運(yùn)動(dòng)前后的三角形會(huì)全等嗎【學(xué)生活動(dòng)】動(dòng)手操作,實(shí)踐感知,得出結(jié)論:兩個(gè)三角形全等.【教師活動(dòng)】要求學(xué)生用字母表示出每個(gè)剪下的三角形,同時(shí)互相指出每個(gè)三角形的頂點(diǎn)、三個(gè)角、三條邊、每條邊的邊角、每個(gè)角的對(duì)邊.【學(xué)生活動(dòng)】把兩個(gè)三角形按上述要求標(biāo)上字母,并任意放置,與同桌交流:(1)何時(shí)能完全重在一起(2)此時(shí)它們的頂點(diǎn)、邊、角有何特點(diǎn)【交流討論】通過同桌交流,實(shí)驗(yàn)得出下面結(jié)論:.任意放置時(shí),并不一定完全重合,?只有當(dāng)把相同的角旋轉(zhuǎn)到一起時(shí)才能完全重合..這時(shí)它們的三個(gè)頂點(diǎn)、三條邊和三個(gè)內(nèi)角分別重合了..完全重合說明三條邊對(duì)應(yīng)相等,三個(gè)內(nèi)角對(duì)應(yīng)相等,?對(duì)應(yīng)頂點(diǎn)在相對(duì)應(yīng)的位置.【教師活動(dòng)】根據(jù)學(xué)生交流的情況,給予補(bǔ)充和語言上的規(guī)范..概念:把兩個(gè)全等的三角形重合到一起,重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn),?重合的邊叫做對(duì)應(yīng)邊,重合的角叫做對(duì)應(yīng)角..證兩個(gè)三角形全等時(shí),通常把表示對(duì)應(yīng)頂點(diǎn)的字母寫在對(duì)應(yīng)的位置上,?如果本圖11.1—2、ABC和厶DBC全等,點(diǎn)A和點(diǎn)D,點(diǎn)B和點(diǎn)B,點(diǎn)C和點(diǎn)C是對(duì)應(yīng)頂點(diǎn),?記作△AB3、DBC【問題提出】課本圖11.1—1中,△AB3、DEF,對(duì)應(yīng)邊有什么關(guān)系對(duì)應(yīng)角呢【學(xué)生活動(dòng)】經(jīng)過觀察得到下面性質(zhì):.全等三角形對(duì)應(yīng)邊相等;.全等三角形對(duì)應(yīng)角相等.二、隨堂練習(xí),鞏固深化課本P37練習(xí).【探研時(shí)空】如圖1所示,△ACF^、DBE/E=ZF,若AD=20cmBC=8cm你能求出線段AB的長嗎與同伴交流.(AB=6)如圖2所示,△AB3AAEC/B=30°,ZACB=85,求出△AEC各內(nèi)角的度數(shù).?(/AEC=30,/EAC=65,/ECA=85)三、課堂總結(jié),發(fā)展?jié)撃?什么叫做全等三角形.全等三角形具有哪些性質(zhì)四、布置作業(yè),專題突破課本P43習(xí)題12.1第1,2,3,4題.五、板書設(shè)計(jì)把黑板分成左、中、右三部分,左邊板書本節(jié)課概念,中間部分板書“思考”中的問題,右邊部分板書學(xué)生的練習(xí).疑難解析由于兩個(gè)三角形的位置關(guān)系不同,在找對(duì)應(yīng)邊、對(duì)應(yīng)角時(shí),可以針對(duì)兩個(gè)三角形不同的位置關(guān)系,尋找對(duì)應(yīng)邊、角的規(guī)律:(1)有公共邊的,?公共邊一定是對(duì)應(yīng)邊;(2)有公共角的,公共角一定是對(duì)應(yīng)角;(3)有對(duì)頂角的,對(duì)頂角一定是對(duì)應(yīng)角;兩個(gè)全等三角形中一對(duì)最長的邊(或最大的角)是對(duì)應(yīng)邊(或角),一對(duì)最短的邊(或最小的角)是對(duì)應(yīng)邊(或角)六、教后記三角形全等的判定(SSS)教學(xué)內(nèi)容本節(jié)課主要內(nèi)容是探索三角形全等的條件(SSS),?及利用全等三角形進(jìn)行證明.教學(xué)目標(biāo)1.知識(shí)與技能了解三角形的穩(wěn)定性,會(huì)應(yīng)用“邊邊邊”判定兩個(gè)三角形全等..過程與方法經(jīng)歷探索“邊邊邊”判定全等三角形的過程,解決簡(jiǎn)單的問題..情感、態(tài)度與價(jià)值觀培養(yǎng)有條理的思考和表達(dá)能力,形成良好的合作意識(shí).重、難點(diǎn)與關(guān)鍵1.重點(diǎn):掌握“邊邊邊”判定兩個(gè)三角形全等的方法.2.難點(diǎn):理解證明的基本過程,學(xué)會(huì)綜合分析法..關(guān)鍵:掌握?qǐng)D形特征,尋找適合條件的兩個(gè)三角形.教具準(zhǔn)備一塊形狀如圖1所示的硬紙片,直尺,圓規(guī).(2)教學(xué)方法采用“操作——實(shí)驗(yàn)”的教學(xué)方法,讓學(xué)生親自動(dòng)手,形成直觀形象.教學(xué)過程一、設(shè)疑求解,操作感知【教師活動(dòng)】(出示教具)問題提出:一塊三角形的玻璃損壞后,只剩下如圖2所示的殘片,?你對(duì)圖中的殘片作哪些測(cè)量,就可以割取符合規(guī)格的三角形玻璃,與同伴交流.【學(xué)生活動(dòng)】觀察,思考,回答教師的問題.方法如下:可以將圖1?的玻璃碎片放在一塊紙板上,然后用直尺和鉛筆或水筆畫出一塊完整的三角形.如圖2,?剪下模板就可去割玻璃了.【理論認(rèn)知】如果△AB3AAB'C,那么它們的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等.?反之,?如果△AB'C滿足三條邊對(duì)應(yīng)相等,三個(gè)角對(duì)應(yīng)相等,即AB=AB',BC=BC',CA=CA',/A=ZA',/B=ZB',/C=/C'.這六個(gè)條件,就能保證△ABC^AABC',從剛才的實(shí)踐我們可以發(fā)現(xiàn):?只要兩個(gè)三角形三條對(duì)應(yīng)邊相等,就可以保證這兩塊三角形全等.信不信【作圖驗(yàn)證】(用直尺和圓規(guī))先任意畫出一個(gè)厶ABC再畫一個(gè)厶AB'C',使AB'=AB,BC=BC,CA=CA把畫出的厶AB'C'剪下來,放在△ABC上,它們能完全重合嗎(即全等嗎)【學(xué)生活動(dòng)】拿出直尺和圓規(guī)按上面的要求作圖,并驗(yàn)證.(如課本圖11.2-2所示)畫一個(gè)△AB'C',使A'B'=AB,AC=AC,B'C=BC.畫線段取B'C'=BC;?分別以B'、C為圓心,線段ABAC為半徑畫弧,兩弧交于點(diǎn)A';.連接線段A'B'、A'C'.【教師活動(dòng)】巡視、指導(dǎo),引入課題:“上述的生活實(shí)例和尺規(guī)作圖的結(jié)果反映了什么規(guī)律”【學(xué)生活動(dòng)】在思考、實(shí)踐的基礎(chǔ)上可以歸納出下面判定兩個(gè)三角形全等的定理.(1)判定方法:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等(簡(jiǎn)寫成“邊邊邊”或“SSS').(2)判斷兩個(gè)三角形全等的推理過程,叫做證明三角形全等.【評(píng)析】通過學(xué)生全過程的畫圖、觀察、比較、交流等,逐步探索出最后的結(jié)論——邊邊邊,在這個(gè)過程中,學(xué)生不僅得到了兩個(gè)三角形全等的條件,同時(shí)增強(qiáng)了數(shù)學(xué)體驗(yàn).二、范例點(diǎn)擊,應(yīng)用所學(xué)【例1】如課本圖11.2—3所示,△ABC是一個(gè)鋼架,AB=ACAD是連接點(diǎn)A與BC中點(diǎn)D的支架,求證厶ABD^AACD(教師板書)【教師活動(dòng)】分析例1,分析:要證明△ABD^AACD可看這兩個(gè)三角形的三條邊是否對(duì)應(yīng)相等.證明:???D是BC的中點(diǎn),???BD=CD在厶ABD和△ACD中?△ABD^AACD(SSS.【評(píng)析】符號(hào)表示“因?yàn)椤?,表示“所以”;從?可以看出,?證明是由題設(shè)(已知)出發(fā),經(jīng)過一步步的推理,最后推出結(jié)論(求證)正確的過程.書寫中注意對(duì)應(yīng)頂點(diǎn)要寫在同一個(gè)位置上,哪個(gè)三角形先寫,哪個(gè)三角形的邊就先寫.三、實(shí)踐應(yīng)用,合作學(xué)習(xí)【問題思考】已知AC=FEBC=DE點(diǎn)AD、BF在直線上,AD=FB(如圖所示),要用“邊邊邊”證明△AB3AFDE除了已知中的AC=FEBC=DE^外,還應(yīng)該有什么條件怎樣才能得到這個(gè)條件【教師活動(dòng)】提出問題,巡視、引導(dǎo)學(xué)生,并請(qǐng)學(xué)生說說自己的想法.【學(xué)生活動(dòng)】先獨(dú)立思考后,再發(fā)言:“還應(yīng)該有AB=FD只要AD=FB兩邊都加上DB即可得到AB=FD”【教學(xué)形式】先獨(dú)立思考,再合作交流,師生互動(dòng).四、隨堂練習(xí),鞏固深化課本P37練習(xí).【探研時(shí)空】如圖所示,AB=DFAC=DEBE=CFBC與EF相等嗎?你能找到一對(duì)全等三角形嗎說明你的理由.(BC=EF△ABC^ADFE五、課堂總結(jié),發(fā)展?jié)撃?全等三角形性質(zhì)是什么.正確地判斷出全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角,?利用全等三角形處理問題的基礎(chǔ),你是怎樣掌握判斷對(duì)應(yīng)邊、對(duì)應(yīng)角的方法.“邊邊邊”判定法告訴我們什么呢?(答:只要一個(gè)三角形三邊長度確定了,則這個(gè)三角形的形狀大小就完全確定了,這就是三角形的穩(wěn)定性)六、布置作業(yè),專題突破.課本P15習(xí)題11.2第1,2題..選用課時(shí)作業(yè)設(shè)計(jì).七、板書設(shè)計(jì)把黑板平均分成三份,左邊部分板書“邊邊邊”判定法,中間部分板書例題,右邊部分板書練習(xí).八、教后記三角形全等判定(SAS)教學(xué)內(nèi)容本節(jié)課主要內(nèi)容是探索三角形全等的條件(SAS,及利用全等三角形證明.教學(xué)目標(biāo)1.知識(shí)與技能領(lǐng)會(huì)“邊角邊”判定兩個(gè)三角形的方法.2.過程與方法經(jīng)歷探究三角形全等的判定方法的過程,學(xué)會(huì)解決簡(jiǎn)單的推理問題.3.情感、態(tài)度與價(jià)值觀培養(yǎng)合情推理能力,感悟三角形全等的應(yīng)用價(jià)值.重、難點(diǎn)及關(guān)鍵.重點(diǎn):會(huì)用“邊角邊”證明兩個(gè)三角形全等..難點(diǎn):應(yīng)用結(jié)合法的格式表達(dá)問題..關(guān)鍵:在實(shí)踐、觀察中正確選擇判定三角形全等的方法.教具準(zhǔn)備投影儀、直尺、圓規(guī).教學(xué)方法采用“操作一一實(shí)驗(yàn)”的教學(xué)方法,讓學(xué)生有一個(gè)直觀的感受.教學(xué)過程一、回顧交流,操作分析【動(dòng)手畫圖】【投影】作一個(gè)角等于已知角.【學(xué)生活動(dòng)】動(dòng)手用直尺、圓規(guī)畫圖.已知:/AOB求作:/AiOBi,使/AiOBi=ZAOB【作法】(1)作射線OA;(2)以點(diǎn)O為圓心,以適當(dāng)長為半徑畫弧,交OA?于點(diǎn)C,?交OB于點(diǎn)D;(3)以點(diǎn)O為圓心,以O(shè)C長為半徑畫弧,交OA于點(diǎn)Ci;(4)以點(diǎn)C為圓心,以CD?長為半徑畫弧,交前面的弧于點(diǎn)D;(5)過點(diǎn)D作射線OBi,/AiOB就是所求的角.【導(dǎo)入課題】教師敘述:請(qǐng)同學(xué)們連接CDCD,回憶作圖過程,分析△COD和ACOD?中相等的條件.【學(xué)生活動(dòng)】與同伴交流,發(fā)現(xiàn)下面的相等量:OD=OiD,OC=Oi,/COD/CiOD,ACOD^CiOD.歸納出規(guī)律:兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等(簡(jiǎn)寫成“邊角邊”或“SAS?”).【評(píng)析】通過讓學(xué)生回憶基本作圖,在作圖過程中體會(huì)相等的條件,在直觀的操作過程中發(fā)現(xiàn)問題,獲得新知,使學(xué)生的知識(shí)承上啟下,開拓思維,發(fā)展探究新知的能力.【媒體使用】投影顯示作法.【教學(xué)形式】操作感知,互動(dòng)交流,形成共識(shí).二、范例點(diǎn)擊,應(yīng)用新知【例2】如課本圖11.2-6所示有一池塘,要測(cè)池塘兩側(cè)A、B的距離,可先在平地上取一個(gè)可以直接到達(dá)A和B的點(diǎn),連接AC并延長到D,使CD=CA連接BC并延長到E,?使CE=CB連接DE那么量出DE的長就是A、B的距離為什么【教師活動(dòng)】操作投影儀,顯示例2,分析:如果能夠證明△ABC^ADEC就可以得出AB=DE在厶ABC和厶DEC中,CA=CDCB=CE如果能得出/1=/2,△ABC^DADEC就全等了.證明:在厶DEC中???△ABC^ADEC(SAS???AB=DE想一想:/1=Z2的依據(jù)是什么(對(duì)頂角相等)AB=DE的依據(jù)是什么(全等三角形對(duì)應(yīng)邊相等)【學(xué)生活動(dòng)】參與教師的講例之中,領(lǐng)悟“邊角邊”證明三角形全等的方法,學(xué)會(huì)分析推理和規(guī)范書寫.【媒體使用】投影顯示例2.【教學(xué)形式】教師講例,學(xué)生接受式學(xué)習(xí)但要積極參與.【評(píng)析】證明分別屬于兩個(gè)三角形的線段相等或角相等的問題,常常通過證明這兩個(gè)三角形全等來解決.三、辨析理解,正確掌握【問題探究】(投影顯示)我們知道,兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等,由“兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等”的條件能判定兩個(gè)三角形全等嗎為什么【教師活動(dòng)】拿出教具進(jìn)行示范,讓學(xué)生直觀地感受到問題的本質(zhì).操作教具:把一長一短兩根細(xì)木棍的一端用螺釘鉸合在一起,?使長木棍的另一端與射線BC的端點(diǎn)B重合,適當(dāng)調(diào)整好長木棍與射線BC所成的角后,固定住長木棍,把短木棍擺起來(課本圖11.2-7),出現(xiàn)一個(gè)現(xiàn)象:△ABC與厶ABD滿足兩邊及其中一邊對(duì)角相等的條件,但△ABC與厶ABD不全等.這說明,?有兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形不一定全等.【學(xué)生活動(dòng)】觀察教師操作教具、發(fā)現(xiàn)問題、辨析理解,動(dòng)手用直尺和圓規(guī)實(shí)驗(yàn)一次,做法如下:(如圖1所示)(1)畫/ABT;(2)以A為圓心,以適當(dāng)長為半徑,畫弧,交BT于C、C';(3)?連線AC,AC,△ABC與△ABC不全等.【形成共識(shí)】“邊邊角”不能作為判定兩個(gè)三角形全等的條件.【教學(xué)形式】觀察、操作、感知,互動(dòng)交流.四、隨堂練習(xí),鞏固深化課本P39練習(xí)第1、2題.探研時(shí)空】一位經(jīng)歷過戰(zhàn)爭(zhēng)的老人講述了這樣一個(gè)故事:一位經(jīng)歷過戰(zhàn)爭(zhēng)的老人講述了這樣一個(gè)故事:如圖2所示)在一次戰(zhàn)役中,我軍陣地與敵軍碉堡隔河相望.為了炸掉這個(gè)碉堡,需要知道碉堡與我軍陣地的距離.在不能過河測(cè)量又沒有任何測(cè)量工具的情況下,一個(gè)戰(zhàn)士想出來這樣一個(gè)辦法,他面向碉堡的方向站好,然后調(diào)整帽子,使視線通過帽檐正好落在碉堡的底部.然后,他轉(zhuǎn)過一個(gè)角度,保持剛才的姿態(tài),這時(shí)視線落在了自己所在岸的某一點(diǎn)上.接著,他用步測(cè)的辦法量出自己與那個(gè)點(diǎn)的距離,這個(gè)距離就是他與碉堡間的距離.(如圖3所示)(1)按這個(gè)戰(zhàn)士的方法,找出教室或操場(chǎng)上與你距離相等的兩個(gè)點(diǎn),?并通過測(cè)量加以驗(yàn)證.(2)你能解釋其中的道理嗎【思路點(diǎn)撥】情境中使用的方法在實(shí)際應(yīng)用中雖然是一種估測(cè),但用到的原理都是三角形全等(SAS);教學(xué)中,讓學(xué)生在教室里或操場(chǎng)上親自做一做,?實(shí)際體驗(yàn).五、課堂總結(jié),發(fā)展?jié)撃埽?qǐng)你敘述“邊角邊”定理..證明兩個(gè)三角形全等的思路是:首先分析條件,?觀察已經(jīng)具備了什么條件;然后以已具備的條件為基礎(chǔ)根據(jù)全等三角形的判定方法,來確定還需要證明哪些邊或角對(duì)應(yīng)相等,再設(shè)法證明這些邊和角相等.六、布置作業(yè),專題突破.課本P43習(xí)題12.2第3、4題.七、板書設(shè)計(jì)把黑板分成左、中、右三部分,其中右邊部分板書“邊角邊”判定法,中間部分板書例題,右邊部分板書練習(xí)題.八、教后記三角形全等判定(ASA)教學(xué)內(nèi)容本節(jié)課主要內(nèi)容是探索三角形全等的判定(ASAAAS,?及利用全等三角形的證明.教學(xué)目標(biāo).知識(shí)與技能理解“角邊角”、“角角邊”判定三角形全等的方法..過程與方法經(jīng)歷探索“角邊角”、“角角邊”判定三角形全等的過程,能運(yùn)用已學(xué)三角形判定法解決實(shí)際問題..情感、態(tài)度與價(jià)值觀培養(yǎng)良好的幾何推理意識(shí),發(fā)展思維,感悟全等三角形的應(yīng)用價(jià)值.重、難點(diǎn)與關(guān)鍵.重點(diǎn):應(yīng)用“角邊角”、“角角邊”判定三角形全等..難點(diǎn):學(xué)會(huì)綜合法解決幾何推理問題..關(guān)鍵:把握綜合分析法的思想,尋找問題的切入點(diǎn).教具準(zhǔn)備投影儀、幻燈片、直尺、圓規(guī).教學(xué)方法采用“問題教學(xué)法”在情境問題中,激發(fā)學(xué)生的求知欲.教學(xué)過程一、回顧交流,鞏固學(xué)習(xí)【知識(shí)回顧】(投影顯示)情境思考:?小菁做了一個(gè)如圖1所示的風(fēng)箏,其中/EDH2FDHED=FD?將上述條件注在圖中,小明不用測(cè)量就能知道EH=FH嗎與同伴交流.[答案:能,因?yàn)楦鶕?jù)“SAS',可以得到厶FDH從而EH=FH].如圖2,AB=ADAC=AE能添上一個(gè)條件證明出厶AB3AADE嗎[答案:BC=?DE(SSS)或/BAC=/DAE(SAS].?如果兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等,兩個(gè)三角形一定會(huì)全等嗎試舉例說明.【教師活動(dòng)】操作投影儀,提出問題,組織學(xué)生思考和提問.【學(xué)生活動(dòng)】通過情境思考,復(fù)習(xí)前面學(xué)過的知識(shí),學(xué)會(huì)正確選擇三角形全等的判定方法,小組交流,踴躍發(fā)言.【教學(xué)形式】用問題牽引,辨析、鞏固已學(xué)知識(shí),在師生互動(dòng)交流過程中,激發(fā)求知欲.二、實(shí)踐操作,導(dǎo)入課題【動(dòng)手動(dòng)腦】(投影顯示)問題探究:先任意畫一個(gè)△ABC再畫出一個(gè)△A'B'C',使AB'=AB,/A'=ZA,/B'=ZB(即使兩角和它們的夾邊對(duì)應(yīng)相等),把畫出的△A'B'C'剪下,?放到△ABC上,它們?nèi)葐帷緦W(xué)生活動(dòng)】動(dòng)手操作,感知問題的規(guī)律,畫圖如下:畫一個(gè)△A'B'C',使A'B'=AB,/A=ZA,ZB'=ZB:.畫AB'=AB;在AB'的同旁畫/DAB'=ZA,/EBA=ZB,AD,B'E交于點(diǎn)C'。探究規(guī)律:兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等(簡(jiǎn)寫成“角邊角”或“ASA').【知識(shí)鋪墊】課本圖11.2—8中,/A=ZA,ZB'=ZB,那么/C=ZA'CB?'嗎為什么【學(xué)生回答】根據(jù)三角形內(nèi)角和定理,/C=180°-/A'-/B',/C=180°-/A-/B,由于/A=ZA',/B=/B',a/C=/C'.【教師提問】在厶ABC和△DEF中,/A=/D,/B=/E,BC=EF(課本圖11.2—9),△ABC與△DEF全等嗎【學(xué)生活動(dòng)】運(yùn)用三角形內(nèi)角和定理,以及“ASA'很快證出厶ABC^^EFD并且歸納如下:??歸納規(guī)律:?兩個(gè)角和其中一個(gè)角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等(簡(jiǎn)與成AAS.三、范例點(diǎn)擊,應(yīng)用所學(xué)【例3】如課本圖11.2—10,D在AB上,E在AC上,AB=AC/B=/C,求證:AD=AE【教師活動(dòng)】引導(dǎo)學(xué)生,分析例3.?關(guān)鍵是尋找到和已知條件有關(guān)的△ACD?^AABE再證它們?nèi)?從而得出AD=AE.證明:在厶ACMAABE中,???△ACD^AABE(ASA???AD=AE【學(xué)生活動(dòng)】參與教師分析,領(lǐng)會(huì)推理方法.【媒體使用】投影顯示例3.【教學(xué)形式】師生互動(dòng).【教師提問】三角對(duì)應(yīng)相等的兩個(gè)三角形全等嗎【學(xué)生活動(dòng)】與同伴交流,得到有三角對(duì)應(yīng)相等的兩個(gè)三角形不一定會(huì)全等,拿出三角板進(jìn)行說明,如圖3,下面這塊三角形的內(nèi)外邊形成的△ABC和△AB?'C'中,/A=ZA',/B=ZB',/C=ZC,但是它們不全等.(形狀相同,大小不等).四、隨堂練習(xí),鞏固深化課本P13練習(xí)第1,2題.【探研時(shí)空】1.如圖4,小紅不慎將一塊三角形模具打碎為兩塊,?她是否可以只帶其中一塊碎片到商店去,就能配一塊與原來一樣的三角形模具呢如果可以,帶哪塊去合適為什么【思路點(diǎn)撥】這是一個(gè)實(shí)際問題,應(yīng)帶含有兩個(gè)角的那一塊,由“角邊角”可知,利用這塊能配出一個(gè)與原來全等的三角形模具.2.小穎在練習(xí)本上畫一個(gè)三角形,小蘭和她開個(gè)玩笑,?將墨跡污染到這塊三角形的圖形上(如圖5),急得小穎直叫,?要小蘭畫出一個(gè)與原來完全一樣的三角形來,小蘭該怎么辦呢你能幫她嗎【思路點(diǎn)撥】觀察圖形,可知未被墨水污染的有兩條邊及其夾角,?根據(jù)“SAS'可以作一個(gè)與原來完全一樣的三角形.五、課堂總結(jié),發(fā)展?jié)撃?證明兩個(gè)三角形全等有幾種方法如何正確選擇和應(yīng)用這些方法.全等三角形性質(zhì)可以用來證明哪些問題舉例說明..你在本節(jié)課的探究過程中,有什么感想六、布置作業(yè),專題突破.課本P44習(xí)題12.2第5,6,9,10題.七、板書設(shè)計(jì)把黑板分成三部分,左邊部分板書“角邊角”、“角角邊”判定法,中間部分板書例題、畫圖,右邊部分板書練習(xí).八、教后記直角三角形全等判定(HL)教學(xué)內(nèi)容本節(jié)課主要內(nèi)容是探究直角三角形的判定方法.教學(xué)目標(biāo)1.知識(shí)與技能在操作、比較中理解直角三角形全等的過程,并能用于解決實(shí)際問題..過程與方法經(jīng)歷探索直角三角形全等判定的過程,掌握數(shù)學(xué)方法,提高合情推理的能力..情感、態(tài)度與價(jià)值觀培養(yǎng)幾何推理意識(shí),激發(fā)學(xué)生求知欲,感悟幾何思維的內(nèi)涵.重、難點(diǎn)與關(guān)鍵1.重點(diǎn):理解利用“斜邊、直角邊”來判定直角三角形全等的方法..難點(diǎn):培養(yǎng)有條理的思考能力,正確使用“綜合法”表達(dá)..關(guān)鍵:判定兩個(gè)三角形全等時(shí),?要注意這兩個(gè)三角形中已經(jīng)具有一對(duì)角相等的條件,只需找到另外兩個(gè)條件即可.教具準(zhǔn)備投影儀、幻燈片、直尺、圓規(guī).教學(xué)方法采用“問題探究”的教學(xué)方法,讓學(xué)生在互動(dòng)交流中領(lǐng)會(huì)知識(shí).教學(xué)過程一、回顧交流,遷移拓展【問題探究】圖1是兩個(gè)直角三角形,除了直角相等的條件,還要滿足幾個(gè)條件,?這兩個(gè)直角三角形才能全等【教師活動(dòng)】操作投影儀,提出“問題探究”,組織學(xué)生討論.【學(xué)生活動(dòng)】小組討論,發(fā)表意見:“由三角形全等條件可知,對(duì)于兩個(gè)直角三角形,滿足一邊一銳角對(duì)應(yīng)相等,或兩直角邊對(duì)應(yīng)相等,這兩個(gè)直角三角形就全等了.”【媒體使用】投影顯示“問題探究”.【教學(xué)形式】分四人小組,合作、討論.【情境導(dǎo)入】如圖2所示.舞臺(tái)背景的形狀是兩個(gè)直角三角形,工作人員想知道這兩個(gè)直角三角形是否全等,但每個(gè)三角形都有一條直角邊被花盆遮住無法測(cè)量.(1)你能幫他想個(gè)辦法嗎(2)如果他只帶了一個(gè)卷尺,能完成這個(gè)任務(wù)嗎工作人員測(cè)量了每個(gè)三角形沒有被遮住的直角邊和斜邊,發(fā)現(xiàn)它們分別對(duì)應(yīng)相等,于是他就肯定“兩個(gè)直角三角形是全等的”,你相信他的結(jié)論嗎【思路點(diǎn)撥】(1)學(xué)生可以回答去量斜邊和一個(gè)銳角,或直角邊和一個(gè)銳角,?但對(duì)問題(2)學(xué)生難以回答.此時(shí),?教師可以引導(dǎo)學(xué)生對(duì)工作人員提出的辦法及結(jié)論進(jìn)行思考,并驗(yàn)證它們的方法,從而展開對(duì)直角三角形特殊條件的探索.【教師活動(dòng)】操作投影儀,提出問題,引導(dǎo)學(xué)生思考、驗(yàn)證.【學(xué)生活動(dòng)】思考問題,探究原理.做一做如課本圖11.2—11:任意畫出一個(gè)Rt△ABC使/C=90°,再畫一個(gè)Rt?△AB'C',使B'C=BC,AB'=AB把畫好的Rt△AB'C'剪下,放到Rt△ABC上,?它們?nèi)葐?/p>

HL').【學(xué)生活動(dòng)】畫圖分析,尋找規(guī)律?HL').規(guī)律:斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等(簡(jiǎn)寫成“斜邊、直角邊”或畫一個(gè)Rt△AB'C',使B'C=BC,AB=AB;?畫/MCN=90°o?在射線CM上取B'CBCo3?以B'為圓心,AB為半徑畫弧,交射線CN于點(diǎn)A'o4?連接AB'o二、范例點(diǎn)擊,應(yīng)用所學(xué)【例4】如課本圖11.2—12,AC丄BC,BDLAD,AC=BD求證BC=AD【思路點(diǎn)撥】欲證BC=?AD?首先應(yīng)尋找和這兩條線段有關(guān)的三角形,?這里有△ABD和△BAC△ADO和厶BCOO為DBAC的交點(diǎn),經(jīng)過條件的分析,△ABD和△BAC具備全等的條件.【教師活動(dòng)】引導(dǎo)學(xué)生共同參與分析例4?證明:???AC丄BCBD丄BD,???/C與/D都是直角.在Rt△ABC和Rt△BAD中,Rt△ABC^Rt△BAD(HL).BC=AD【學(xué)生活動(dòng)】參與教師分析,提出自己的見解.【評(píng)析】在證明兩個(gè)直角三角形全等時(shí),要防止學(xué)生使用“SSA'來證明.【媒體使用】投影顯示例4?三、隨堂練習(xí),鞏固深化課本P43第練習(xí)1、2題.【探研時(shí)空】如圖3,有兩個(gè)長度相同的滑梯,左邊滑梯的高度AC?與右邊滑梯水平方面的長度DF相等,兩個(gè)滑梯的傾斜角/ABC和/DEF的大小有什么關(guān)系下面是三個(gè)同學(xué)的思考過程,你能明白他們的意思嗎(如圖4所示)abc^adef^zABOZDEF^ZABC+ZDEF=90?有一條直角邊和斜邊對(duì)應(yīng)相等,所以△ABWADEF全等.這樣/ABC*DEF,也就是/ABC+ZDEF=90在Rt△ABC和Rt△DEF中,BC=EFAC=DF因此這兩個(gè)三角形是全等的,這樣/ABCZDEF,所以/ABC與ZDEF是互余的.【教學(xué)形式】這個(gè)問題涉及的推理比較復(fù)雜,可以通過全班討論,共同解決這個(gè)問題,但不需要每個(gè)學(xué)生自己獨(dú)立說明理由,只要求學(xué)生能看懂三位同學(xué)的思考過程就可以了.四、課堂總結(jié),發(fā)展?jié)撃鼙竟?jié)課通過動(dòng)手操作,在合作交流、比較中共同發(fā)現(xiàn)問題,培養(yǎng)直觀發(fā)現(xiàn)問題的能力,在反思中發(fā)現(xiàn)新知,體會(huì)解決問題的方法.通過今天的學(xué)習(xí)和對(duì)前面三角形全等條件的探求,可知判定直角三角形全等有五種方法.(教師讓學(xué)生討論歸納)五、布置作業(yè),專題突破.課本P44習(xí)題12.2第7,8題。六、課堂總結(jié),發(fā)展?jié)撃苡蓪W(xué)生談學(xué)習(xí)收獲七、板書設(shè)計(jì)把黑板分成三份,重復(fù)使用,左邊部分板書直角三角形判定定理等有關(guān)概念,中間部分板書“探究”右邊部分板書例題.八、教后記角的平分線的性質(zhì)(1)教學(xué)內(nèi)容本節(jié)課首先介紹作一個(gè)角的平分線的方法,然后用三角形全等證明角平分線的性質(zhì)定理.教學(xué)目標(biāo)1.知識(shí)與技能通過作圖直觀地理解角平分線的兩個(gè)互逆定理..過程與方法經(jīng)歷探究角的平分線的性質(zhì)的過程,領(lǐng)會(huì)其應(yīng)用方法..情感、態(tài)度與價(jià)值觀激發(fā)學(xué)生的幾何思維,啟迪他們的靈感,使學(xué)生體會(huì)到幾何的真正魅力.重、難點(diǎn)與關(guān)鍵1.重點(diǎn):領(lǐng)會(huì)角的平分線的兩個(gè)互逆定理.2.難點(diǎn):兩個(gè)互逆定理的實(shí)際應(yīng)用..?關(guān)鍵:可通過學(xué)生折紙活動(dòng)得到角平分線上的點(diǎn)到角的兩邊的距離相等的結(jié)論.利用全等來證明它的逆定理.教具準(zhǔn)備投影儀、制作如課本圖11.3—1的教具.教學(xué)方法采用“問題解決”的教學(xué)方法,讓學(xué)生在實(shí)踐探究中領(lǐng)會(huì)定理.教學(xué)過程一、創(chuàng)設(shè)情境,導(dǎo)入新課【問題探究】(投影顯示)如課本圖11.3—1,是一個(gè)平分角的儀器,其中AB=ADBC=DC將點(diǎn)A放在角的頂點(diǎn),AB和AD沿著角的兩邊放下,沿AC畫一條射線AE,AE就是角平分線,你能說明它的道理嗎【教師活動(dòng)】首先將“問題提出”,然后運(yùn)用教具(如課本圖11.3—1?)直觀地進(jìn)行講述,提出探究的問題.【學(xué)生活動(dòng)】小組討論后得出:根據(jù)三角形全等條件“邊邊邊”課本圖11.3—1判定法,可以說明這個(gè)儀器的制作原理.教師活動(dòng)】請(qǐng)同學(xué)們和老師一起完成下面的作圖問題.操作觀察:已知:/AOB求法:/AOB的平分線.作法:(1)以O(shè)為圓心,適當(dāng)長為半徑作弧,交OA于M交OB于N.(2)分別以MN為圓心,大于MN的長為半徑作弧,兩弧在/AOB的內(nèi)部交于點(diǎn)C.(3)作射線OC射線OC?J卩為所求(課本圖11.3—2).【學(xué)生活動(dòng)】動(dòng)手制圖(尺規(guī)),邊畫圖邊領(lǐng)會(huì),認(rèn)識(shí)角平分線的定義;同時(shí)在實(shí)踐操作中感知.【媒體使用】投影顯示學(xué)生的“畫圖”.【教學(xué)形式】小組合作交流.二、隨堂練習(xí),鞏固深化課本P19練習(xí).【學(xué)生活動(dòng)】動(dòng)手畫圖,從中得到:直線CD與直線AB是互相垂直的.【探研時(shí)空】(投影顯示)如課本圖12.3—3,將/AOB對(duì)折,再折出一個(gè)直角三角形(使第一條折痕為斜邊),然后展開,觀察兩次折疊形成的三條折痕,你能得出什么結(jié)論【教師活動(dòng)】操作投影儀,提出問題,提問學(xué)生.【學(xué)生活動(dòng)】實(shí)踐感知,互動(dòng)交流,得出結(jié)論,“從實(shí)踐中可以看出,第一條折痕是/AOB的平分線OC第二次折疊形成的兩條折痕PDPE是角的平分線上一點(diǎn)到/AOE兩邊的距離,這兩個(gè)距離相等.”論證如下:已知:OC是/AOB的平分線,點(diǎn)P在OC上,PD丄OAPE±OB垂足分別是DE(課本圖11.3—4)求證:PD=PE.證明:???PD丄OAPE丄OB,???/PDO=/PEO=90在厶PDO^n^PEO中,???△PDO^APEO(AAS?PD=PE【歸納如下】角的平分線上的點(diǎn)到角的兩邊的距離相等.教學(xué)形式】師生互動(dòng),生生互動(dòng),合作交流.三、情境合一,優(yōu)化思維【問題思索】(投影顯示)如課本圖11.3—5,要在S區(qū)建一個(gè)集貿(mào)市場(chǎng),使它到公路、鐵路的距離相等,?離公路與鐵路交叉處500米,這個(gè)集貿(mào)市場(chǎng)應(yīng)建于何處(在圖上標(biāo)出它的位置,比例尺為1:20000)【學(xué)生活動(dòng)】四人小組合作學(xué)習(xí),動(dòng)手操作探究,獲得問題結(jié)論.從實(shí)踐中可知:角平分線上的點(diǎn)到角的兩邊距離相等,將條件和結(jié)論互換:到角的兩邊的距離相等的點(diǎn)也在角的平分線.證明如下:已知:PD丄OAPE±OB垂足分別是DE,PD=PE求證:點(diǎn)P在/AOB的平分線上.證明:經(jīng)過點(diǎn)P作射線OC?/PD丄OAPE丄OB???/PDO2PEO=90在Rt△PDC和Rt△PEO中,Rt△PDO^Rt△PEO(HL)???/AOC2BOCOC是/AOB的平分線.【教師活動(dòng)】啟發(fā)、引導(dǎo)學(xué)生;組織小組之間的交流、討論;幫助“學(xué)困生”.【歸納】到角的兩邊的距離相等的點(diǎn)在角的平分線上.【教學(xué)形式】自主、合作、交流,在教師的引導(dǎo)下,比較上述兩個(gè)結(jié)論,弄清其條件和結(jié)論,加深認(rèn)識(shí).四、范例點(diǎn)擊,應(yīng)用所學(xué)【例】如課本圖12.3—6,△ABC的角平分線BMCN相交于點(diǎn)P,求證:點(diǎn)P?到三邊AB,BCCA的距離相等.【思路點(diǎn)撥】因?yàn)橐阎?、求證中都沒有具體說明哪些線段是距離而證明它們相等必須標(biāo)出它們.所以這一段話要在證明中寫出,同輔助線一樣處理?如果已知中寫明點(diǎn)P到三邊的距離是哪些線段,那么圖中畫實(shí)線在證明中就可以不寫.【教師活動(dòng)】操作投影儀,顯示例子,分析例子,引導(dǎo)學(xué)生參與.證明:過點(diǎn)P作PDPEPF分別垂直于ABBCCA垂足為DE、F.???BM是△ABC的角平分線,點(diǎn)P在BM上.???PD=PE同理PE=PF?PD=PE=PF即點(diǎn)P到邊ABBCCA的距離相等.【評(píng)析】在幾何里,如果證明的過程完全一樣,只是字母不同,可以用“同理”二字概括,省略詳細(xì)證明過程.【學(xué)生活動(dòng)】參與教師分析,主動(dòng)探究學(xué)習(xí).五、隨堂練習(xí),鞏固深化課本P22練習(xí).六、課堂總結(jié),發(fā)展?jié)撃?學(xué)生自行小結(jié)角平分線性質(zhì)及其逆定理,和它們的區(qū)別..說明本節(jié)例子實(shí)際上是證明三角形三條角平分線相交于一點(diǎn)的問題,?說明這一點(diǎn)是三角形的內(nèi)切圓的圓心(為以后學(xué)習(xí)設(shè)伏).七、布置作業(yè),專題突破.課本P22習(xí)題11.3第1、2、3題..選用課時(shí)作業(yè)設(shè)計(jì).八、板書設(shè)計(jì)把黑板分成三部分,左邊部分板書概念、定理等,中間部分板書探究,右邊部分板書例題,重復(fù)使用時(shí),中間部分和右邊部分板書練習(xí)題.九、教后記角的平分線的性質(zhì)(鞏固練習(xí))教學(xué)內(nèi)容本節(jié)課主要是對(duì)角的平分線的性質(zhì)定理的應(yīng)用展開討論,讓學(xué)生熟練地應(yīng)用它們解決實(shí)際問題.教學(xué)目標(biāo)1.知識(shí)與技能能應(yīng)用角的平分線的性質(zhì)定理解決一些實(shí)際的問題.2.過程與方法經(jīng)歷探索角的平分線性質(zhì)的應(yīng)用過程,領(lǐng)會(huì)幾何分析的內(nèi)涵,掌握綜合法的表達(dá)思想.3.情感、態(tài)度與價(jià)值觀激發(fā)學(xué)生的邏輯思維,在比較中獲取知識(shí),使學(xué)生感悟幾何的簡(jiǎn)練思維.重、難點(diǎn)與關(guān)鍵1.重點(diǎn):應(yīng)用角的平分線性質(zhì)定理.2.難點(diǎn):應(yīng)用“綜合法”進(jìn)行表達(dá)..關(guān)鍵:通過觀察、操作、分析來感悟定理的內(nèi)涵,?抓住問題的因果關(guān)系進(jìn)行推理.教具準(zhǔn)備投影儀、幻燈片、直尺、圓規(guī).教學(xué)方法一、回顧交流,練中反思【概念復(fù)習(xí)】【教學(xué)提問】同學(xué)們能否從集合的觀點(diǎn)來說明角的平分線的性質(zhì).【學(xué)生活動(dòng)】在教師對(duì)“集合”的思想做初步講解后,學(xué)生可以通過交流得出:角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合.【分層練習(xí)】(投影顯示)1.已知:如圖〔,△ABC中,AD是角的平分線,BD=CDDEDF分別垂直于ABAC,E、F是垂足,求證:EB=FC.【思路點(diǎn)撥】只要證明EB和FC分別所在的兩個(gè)三角形全等(△EBD^AFCD.【教師活動(dòng)】操作投影儀,巡視,啟發(fā)引導(dǎo),適時(shí)提問.【學(xué)生活動(dòng)】小組合作學(xué)習(xí),尋求解題思路,踴躍上臺(tái)演示自己的證明.證明:???AD是角的平分線,DEIAB,DF丄AC,???DE=DF在厶EBD和△FCD中,???△EBD^AFCD(HL)?EB=FC【媒體使用】投影顯示“分層練習(xí)1”和學(xué)生的練習(xí).【教學(xué)形式】小組合作(4人小組)交流,然后全班匯報(bào),以練促思.2.已知:如圖2,河的南區(qū)有一個(gè)工廠,在公路西側(cè),到公路的距離與到河岸的距離相等,并且與河公路橋的距離為300米,在圖上標(biāo)出工廠的位置,并說明理由.【思路點(diǎn)撥】畫圖略,根據(jù)角的平分線性質(zhì),工廠應(yīng)在河流與公路交角的平分線上.【教師活動(dòng)】操作投影儀,提出問題,參與學(xué)生的思考和討論.【學(xué)生活動(dòng)】分四人小組積極地討論,得出結(jié)論,踴躍發(fā)表自己的看法.【媒體使用】投影顯示“分層練習(xí)2”.【教學(xué)形式】合作學(xué)習(xí),生生互動(dòng)交流.二、操作觀察,辨析理解【操作思考】(投影顯示)首先按如下步驟進(jìn)行操作:(1)在一張紙上任意畫一個(gè)角(角的邊不要畫得太短)/AOB(2)剪下所畫的角.(3)折疊所畫的角,使角的兩邊OA與OB重合,設(shè)折痕為Ox如圖3.(4)在折疊形成的兩層紙之間放入復(fù)寫紙.(5)在Ox上取一點(diǎn)P,并且過點(diǎn)P畫OA的垂線.(6)拿出復(fù)寫紙,并且把折疊的紙展開觀察展開后的圖形,并進(jìn)行思考,上面的操作反映了哪條規(guī)律是課本上一節(jié)課中的那個(gè)概念嗎【教師活動(dòng)】操作投影儀,巡視,參與學(xué)生的討論,引導(dǎo)啟發(fā).【學(xué)生活動(dòng)】分四人小組合作學(xué)習(xí),從操作中感悟知識(shí)和規(guī)律,得到結(jié)論:反映規(guī)律是:角的平分線上的點(diǎn)到角的兩邊距離相等.【媒體使用】投影顯示“操作思考”.【教學(xué)形式】分四人小組合作學(xué)習(xí),動(dòng)手動(dòng)腦,互動(dòng)交流.三、課堂演練,系統(tǒng)躍進(jìn)已知:如圖4,AB=CDDE丄AC,BF丄AC,E、F是垂足,DE=BF求證:(1)AE=CF(?2)AB//CD[提示]應(yīng)用HL證Rt△ABC^Rt△CED2.已知:如圖5,BD是/ABC的平分線,AB=BC點(diǎn)P在BD上,PM丄AD,PN丄CD?垂足分別是MN,求證PM=PN.[提示]I/ABD=/CBDAB=CBBD=BD???△ABD^ACBDADB玄CDB又PMLADPN1CD/?PM=PN四、課堂總結(jié)發(fā)展?jié)撃苡蓪W(xué)生分四人小組進(jìn)行學(xué)習(xí)反思,然后各小組匯報(bào)學(xué)習(xí)情況.五、布置作業(yè),專題突破1.課本P51習(xí)題12.3第4、5題.六、板書設(shè)計(jì)把黑板分成左右兩份,左邊板書概念和例題,右邊板書學(xué)生的練習(xí),重復(fù)使用.七、教后記第十二章全等三角形復(fù)習(xí)與交流教學(xué)內(nèi)容本節(jié)課主要進(jìn)行系統(tǒng)的復(fù)習(xí),讓學(xué)生建構(gòu)出完整的知識(shí)體系.教學(xué)目標(biāo)1.知識(shí)與技能理解全等三角形的性質(zhì)與判定定理,以及角的平分線性質(zhì),會(huì)應(yīng)用在實(shí)際的問題中.2.過程與方法經(jīng)歷探究全等三角形有關(guān)性質(zhì)和判定等概念,掌握幾何的分析思想,能應(yīng)用“綜合法”表達(dá)問題..情感、態(tài)度與價(jià)值觀發(fā)展學(xué)生的邏輯思維,提高合情推理能力,體會(huì)幾何學(xué)的實(shí)際應(yīng)用價(jià)值.重、難點(diǎn)與關(guān)鍵1.重點(diǎn):應(yīng)用全等三角形性質(zhì)與判定定理解決實(shí)際問題.2.難點(diǎn):分析思路的形成..關(guān)鍵:明確全等三角形的應(yīng)用思想,養(yǎng)成說理有據(jù)的意識(shí).教具準(zhǔn)備投影儀、幻燈片.教學(xué)方法采用“精講一精練”的教學(xué)方法,讓學(xué)生自主構(gòu)筑知識(shí)體系.教學(xué)過程一、回顧交流,系統(tǒng)躍進(jìn)【交流討論】教學(xué)形式:分四人小組,回顧小結(jié).然后,教師請(qǐng)三位同學(xué)談?wù)勊窃趺纯偨Y(jié)的.【知識(shí)結(jié)構(gòu)圖】見課本,用投影顯示.教師提問:1.舉一些全等形的實(shí)例,全等三角形的對(duì)應(yīng)邊有什么關(guān)系對(duì)應(yīng)角呢【學(xué)生活動(dòng)】踴躍舉手,發(fā)言:全等三角形對(duì)應(yīng)角相等,對(duì)應(yīng)邊相等.【媒體使用】投影顯示一些生活中的全等圖形,配合學(xué)生的認(rèn)知.【教師提問】一個(gè)三角形有三條邊,三個(gè)角,從中任選三個(gè)來判定兩個(gè)三角形全等,哪些是能夠判定的哪些是不能夠判定的【學(xué)生活動(dòng)】小組討論,互動(dòng)交流.形成共識(shí):(1)邊邊邊;(2)邊角邊;(3)角邊角;(4)角角邊;(5)斜邊、直角邊(證Rt△)等能夠判定兩個(gè)三角形全等.(1)SSA(2)AAA是不能夠判定兩個(gè)三角形全等的.【教師提問】.你對(duì)角的平分線有了哪些新的認(rèn)識(shí)?你能用全等三角形證明角的平分線性質(zhì)嗎.你能結(jié)合本章的有關(guān)問題,說一說證明一個(gè)結(jié)論的過程嗎【學(xué)生活動(dòng)】小組討論,形成共識(shí).二、課堂演練,鞏固學(xué)習(xí)【演練題1】如圖1,△ABC^^ADEBC的延長線交DA于F,/ACB=/AED=105,/CAD=1O,/B=ZD=25°,求/DFB和/DGB的度數(shù).(85°,60°)(1)(2)(3)【演練題2】如圖2,點(diǎn)A,B,C,D在一條直線上,△ACE^ABDF.求證:(1)AE//BF;(2)AB=CD[(1)v^ACE^ABDF,A=/DBF二AE//BF;v^ACE^ABDF,?二AC=BD二AB=CD]【演練題3】若厶ABC^AA'B'C',/A=/A°,/B=/B',且/C=50°,/B'=75°,AC=4cm求/A,/B的度數(shù)及A'C'的長.(/A=55°,/B=75°,A'C=4cm)【教師活動(dòng)】操作投影儀巡視、關(guān)注學(xué)生的思維請(qǐng)三位學(xué)生上臺(tái)演示.【學(xué)生活動(dòng)】書面練習(xí)與同伴交流踴躍上臺(tái)演示.【媒體使用】投影顯示“演練題”和學(xué)生的練習(xí)(實(shí)物投影).【教學(xué)形式】自主、合作、交流.【教師活動(dòng)】和學(xué)生一起總結(jié)認(rèn)識(shí)提高.【評(píng)析】上述演練題主要是復(fù)習(xí)全等三角形性質(zhì).【演練題4】已知如圖3,AD與CB交于O,AO=ODCO=OBEF過O與ABCD?分別交于E、F,求證:/AEO=/DFO【思路點(diǎn)撥】觀察圖形,分析已知條件和結(jié)論,欲證/AEONBFQ?只需證AB?//DC由已知條件易知厶AOB^ADOC必有/A=ZD,這樣就可解得AB/CD,?從而證明/AEONDFO三、隨堂練習(xí),鞏固深化課本P26復(fù)習(xí)題第4、7、10題.四、布置作業(yè),專題突破.課本P55--56復(fù)習(xí)題第2,3,5,6,9,11題..選用課時(shí)作業(yè)設(shè)計(jì).五、板書設(shè)計(jì)把黑板分成兩份,左邊部分板書例題,右邊部分板書學(xué)習(xí)練習(xí)題,重復(fù)使用六、疑難解析如圖4,在厶ABC中,/仁/2,73=74,/A=60°,求證:CD+BE=BC證明:在BC上截取BF=BE連接IF.?/BI=BI,71=72,BF=BE???△BFI◎△BEI,二75=76.???7仁72.73=74,7A=60°,?7BIC=120°?75=60°.?77=75=60°76=75=60°78=120°-60°=60°?77=78.73=74,CI=CI,77=78,IDC^AIFC,?CD=CFCD+BE=CF+BF即卩CD+BE=BC從上述例子可以歸納:證明m=b+c時(shí),常用兩種方法,(1)截長法,即在m?上截取一段等于b(或c),證明剩下一段等于c(或b);(2)補(bǔ)短法:延長b(或c),?證明它們的和等于a,上述例子由于71=72,因此,在BC上截取BF=BE連接HTY3IF是較為常用的方法.七、教后記第十三章軸對(duì)稱軸對(duì)稱(一)教學(xué)目標(biāo):〔知識(shí)與技能〕1.在生活實(shí)例中認(rèn)識(shí)軸對(duì)稱圖.2.分析軸對(duì)稱圖形,理解軸對(duì)稱的概念.軸對(duì)稱圖形的概念〔過程與方法〕1、在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣;2、在靈活運(yùn)用知識(shí)解決有關(guān)問題的過程中,體驗(yàn)并掌握探索、歸納圖形性質(zhì)的推理方法,進(jìn)一步培說理和進(jìn)行簡(jiǎn)單推理的能力?!睬楦小B(tài)度與價(jià)值觀〕1、體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心;2、會(huì)應(yīng)用數(shù)學(xué)知識(shí)解決一些簡(jiǎn)單的實(shí)際問題,增強(qiáng)應(yīng)用意識(shí);3、使學(xué)生進(jìn)一步形成數(shù)學(xué)來源于實(shí)踐,反過來又服務(wù)于實(shí)踐的辯證唯物主義觀點(diǎn)。教學(xué)重點(diǎn):.理解軸對(duì)稱的概念教學(xué)難點(diǎn)能夠識(shí)別軸對(duì)稱圖形并找出它的對(duì)稱軸.教具準(zhǔn)備:三角尺教學(xué)過程一.創(chuàng)設(shè)情境,引入新課舉實(shí)例說明對(duì)稱的重要性和生活充滿著對(duì)稱。對(duì)稱給我們帶來多少美的感受!初步掌握對(duì)稱的奧秒,不僅可以幫助我們發(fā)現(xiàn)一些圖形的特征,還可以使我們感受到自然界的美與和諧.軸對(duì)稱是對(duì)稱中重要的一種,讓我們一起走進(jìn)軸對(duì)稱世界,探索它的秘密吧!二.導(dǎo)入新課觀察:幾幅圖片(出示圖片),觀察它們都有些什么共同特征.?甚至日常生活用品,人強(qiáng)調(diào):對(duì)稱現(xiàn)象無處不在,從自然景觀到分子結(jié)構(gòu),從建筑物到藝術(shù)作品,?甚至日常生活用品,人練習(xí):從學(xué)生生活周圍的事物中來找一些具有對(duì)稱特征的例子.2.觀察:如圖12.1.2,把一張紙對(duì)折,剪出一個(gè)圖案(折痕處不要完全剪斷),?再打開這張對(duì)折的紙,就剪出了美麗的窗花.你能發(fā)現(xiàn)它們有什么共同的特點(diǎn)嗎如果一個(gè)圖形沿一直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對(duì)稱圖形,這條直線就是它的對(duì)稱軸.我們也說這個(gè)圖形關(guān)于這條直線(成軸)?對(duì)稱.動(dòng)手操作:取一張質(zhì)地較硬的紙,將紙對(duì)折,并用小刀在紙的中央隨意刻出一個(gè)圖案,將紙打開后鋪平,你得到兩個(gè)成軸對(duì)稱的圖案了嗎歸納小結(jié):由此我們進(jìn)一步了解了軸對(duì)稱圖形的特征:一個(gè)圖形沿一條直線折疊后,折痕兩側(cè)的圖形完全重合.練習(xí):你能找出它們的對(duì)稱軸嗎分小組討論.思考:大家想一想,你發(fā)現(xiàn)了什么小結(jié)得出:.像這樣,?把一個(gè)圖形沿著某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這條直線對(duì)稱,?這條直線叫做對(duì)稱軸,折疊后重合的點(diǎn)是對(duì)應(yīng)點(diǎn),叫做對(duì)稱點(diǎn).三.隨堂練習(xí)1、課本60練習(xí)1、2。四.課時(shí)小結(jié)這節(jié)課我們主要認(rèn)識(shí)了軸對(duì)稱圖形,了解了軸對(duì)稱圖形及有關(guān)概念,進(jìn)一步探討了軸對(duì)稱的特點(diǎn),區(qū)分了軸對(duì)稱圖形和兩個(gè)圖形成軸對(duì)稱.五.課后作業(yè)習(xí)題.1、2、6題.六.教后記軸對(duì)稱(二)教學(xué)目標(biāo)〔知識(shí)與技能〕1.了解兩個(gè)圖形成軸對(duì)稱性的性質(zhì),了解軸對(duì)稱圖形的性質(zhì).2.探究線段垂直平分線的性質(zhì).〔過程與方法〕1、在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣;2、在靈活運(yùn)用知識(shí)解決有關(guān)問題的過程中,體驗(yàn)并掌握探索、歸納圖形性質(zhì)的推理方法,進(jìn)一步培說理和進(jìn)行簡(jiǎn)單推理的能力?!睬楦小B(tài)度與價(jià)值觀〕1、體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心;2、會(huì)應(yīng)用數(shù)學(xué)知識(shí)解決一些簡(jiǎn)單的實(shí)際問題,增強(qiáng)應(yīng)用意識(shí)。教學(xué)重點(diǎn):軸對(duì)稱的性質(zhì),線段垂直平分線的性質(zhì)教學(xué)難點(diǎn):1.軸對(duì)稱的性質(zhì).2.線段垂直平分線的性質(zhì).3.體驗(yàn)軸對(duì)稱的特征.教具準(zhǔn)備:圓規(guī)、三角尺、教學(xué)過程一.創(chuàng)設(shè)情境,引入新課什么樣的圖形是軸對(duì)稱圖形呢軸對(duì)稱圖形有哪些性質(zhì),從圖形中能得到結(jié)論二.導(dǎo)入新課如下圖,△AB'C'關(guān)于直線MN對(duì)稱,點(diǎn)A'、B'、C'分別是點(diǎn)A?B、C對(duì)稱點(diǎn),線段AA、BB、CC與直線MN有什么關(guān)系為什么(學(xué)生思考并做小范圍討論)對(duì)稱軸所在直線經(jīng)過對(duì)稱點(diǎn)所連線段的中點(diǎn),并且垂直于這條線段.我們把經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線.畫一個(gè)軸對(duì)稱圖形,并找出兩對(duì)稱點(diǎn),看一下對(duì)稱軸和兩對(duì)稱點(diǎn)連線的關(guān)系.對(duì)稱軸所在直線經(jīng)過對(duì)稱點(diǎn)所連線段的中點(diǎn),并且垂直于這條線段.歸納圖形軸對(duì)稱的性質(zhì):如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,?那么對(duì)稱軸是任何一對(duì)對(duì)稱點(diǎn)所連線段的垂直平分線.類似地,軸對(duì)稱圖形的對(duì)稱軸是任何一對(duì)對(duì)稱點(diǎn)所連線段的垂直平分線.下面我們來探究線段垂直平分線的性質(zhì).[探究1]如下圖.木條L與AB釘在一起,L垂直平分AB,Pi,P2,P3,…是L上的點(diǎn),?分別量一量點(diǎn)Pi,P2,P3,…到A與B的距離,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論