二次函數(shù)銷售方面的問題1二元一次函數(shù)應(yīng)用課件_第1頁
二次函數(shù)銷售方面的問題1二元一次函數(shù)應(yīng)用課件_第2頁
二次函數(shù)銷售方面的問題1二元一次函數(shù)應(yīng)用課件_第3頁
二次函數(shù)銷售方面的問題1二元一次函數(shù)應(yīng)用課件_第4頁
二次函數(shù)銷售方面的問題1二元一次函數(shù)應(yīng)用課件_第5頁
已閱讀5頁,還剩31頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

§2.6何時獲得最大利潤§2.6學(xué)習(xí)目標(biāo):1.能解決二次函數(shù)實際問題中的最值.2.應(yīng)用二次函數(shù)解決實際問題,掌握實際問題中變量之間的二次函數(shù)關(guān)系,并運用二次函數(shù)的知識求出實際問題的最大值、最小值。學(xué)習(xí)目標(biāo):1.能解決二次函數(shù)實際問題中的最值.頂點式、對稱軸和頂點坐標(biāo)公式:

回顧舊知獨學(xué)獨研:頂點式、對稱軸和頂點坐標(biāo)公式:回顧舊知獨學(xué)獨研:利潤=總利潤=

回顧舊知售價-進價每件利潤×銷售額利潤=總利潤=回顧舊知售價-進價每件利潤×銷售額銷售單價是多少時,可以獲利最多?何時獲得最大利潤

例1:某商店經(jīng)營T恤衫,已知成批購進時單價是2.5元.根據(jù)市場調(diào)查,銷售量與銷售單價滿足如下關(guān)系:在某一時間內(nèi),單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售出200件.

新知探究銷售單價是多少時,可以獲利最多?何時獲得最大利潤例1:某解:設(shè)銷售價為x元(x≤13.5元),那么某商店經(jīng)營T恤衫,已知成批購進時單價是2.5元.根據(jù)市場調(diào)查,銷售量與單價滿足如下關(guān)系:在一時間內(nèi),單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售出200件.銷售量可表示為:

件;每件T恤衫的利潤為:

元;所獲總利潤可表示為:

元;∴當(dāng)銷售單價為

元時,可以獲得最大利潤,最大利潤是

元.解:設(shè)銷售價為x元(x≤13.5元),那么某商店經(jīng)營T恤衫,我們還曾經(jīng)利用列表的方法得到一個猜測,現(xiàn)在請你驗證一下你的猜測(增種多少棵橙子樹時,總產(chǎn)量最大?)是否正確。與同伴進行交流你是怎么做的。還記得本章一開始的“種多少棵橙子樹”的問題嗎?合作交流我們還曾經(jīng)利用列表的方法得到一個猜測,現(xiàn)在請你驗證一下你的猜某果園有100棵橙子樹,每一棵樹平均結(jié)600個橙子.現(xiàn)準(zhǔn)備多種一些橙子樹以提高產(chǎn)量,但是如果多種樹,那么樹之間的距離和每一棵樹所接受的陽光就會減少.根據(jù)經(jīng)驗估計,每多種一棵樹,平均每棵樹就會少結(jié)5個橙子.在上述問題中,種多少棵橙子樹,可以使果園橙子的總產(chǎn)量最多?x/棵1234567y/個60095601806025560320603756042060455x/棵891011121314y/個60480604956050060495604806045560420當(dāng)增種10棵橙子樹時,可以使果園橙子總產(chǎn)量最多。某果園有100棵橙子樹,每一棵樹平均結(jié)600個橙子.現(xiàn)準(zhǔn)備多例2:某果園有100棵橙子樹,每一棵樹平均結(jié)600個橙子.現(xiàn)準(zhǔn)備多種一些橙子樹以提高產(chǎn)量,據(jù)經(jīng)驗估計,每多種2棵樹,平均每棵樹就會少結(jié)10個橙子.(1)種多少棵橙子樹,可以使果園橙子的總產(chǎn)量最多?最多為多少?(2)增種多少棵橙子,可以使橙子的總產(chǎn)量在60400個以上?例2:某果園有100棵橙子樹,每一棵樹平均結(jié)600個橙子.現(xiàn)

(1)解:假設(shè)果園增種x棵橙子樹,果園共有(100+x)棵樹,平均每棵樹結(jié)(600-5x)個橙子,果園橙子的總產(chǎn)量y=(100+x)(600-5x)=-5(x-10)2+60500當(dāng)x=10時,y有最大值,最大值60500∴果園種植110棵橙子樹時,果園橙子的總產(chǎn)量最大,最大為60500=-5x2+100x+60000.(1)解:假設(shè)果園增種x棵橙子樹,果園共有(100+x)棵(2)增種多少棵橙子,可以使橙子的總產(chǎn)量在60400個以上?答:增種6~14棵橙子樹,可以使橙子的總產(chǎn)量在60400個以上.得-5(x-10)2+60500=60400(2)解:當(dāng)y=60400時,解得:(2)增種多少棵橙子,可以使橙子的總產(chǎn)量在60400個以上?某商店購進一批單價為20元的日用品,如果以單價30元銷售,那么半個月內(nèi)可以售出400件。根據(jù)銷售經(jīng)驗,提高銷售單價會導(dǎo)致銷售量的減少,即銷售單價每提高1元,銷售量相應(yīng)減少20件。如何提高售價,才能在半個月內(nèi)獲得最大利潤?隨堂練習(xí)

某商店購進一批單價為20元的日用品,如果以單價30元銷二次函數(shù)銷售方面的問題1二元一次函數(shù)應(yīng)用課件

3,龍城公園要建造圓形噴水池.在水池中央垂直于水面處安裝一個柱子OA,O恰在水面中心,OA=1.25m.由柱子頂端A處的噴頭向外噴水,水流在各個方向沿形狀相同的拋物線落下,為使水流形狀較為漂亮,要求設(shè)計成水流在離OA距離為1m處達到最大高度2.25m.(1)如果不計其它因素,那么水池的半徑至少要多少m,才能使噴出的水流不致落到池外?(2)若水流噴出的拋物線形狀與(1)相同,水池的半徑為3.5m,要使水流不落到池外,此時水流的最大高度應(yīng)達到多少m(精確0.1m)?3,龍城公園要建造圓形噴水池.在水池中央垂直于水面處解:(1)如圖,建立如圖所示的坐標(biāo)系,當(dāng)y=0時,得點C(2.5,0);同理,點D(-2.5,0).設(shè)拋物線為y=a(x-1)2+2.25,由待定系數(shù)法可求得拋物線表達式為:y=-(x-1)2+2.25.數(shù)學(xué)化xyOA●B(1,2.25)●(0,1.25)●C(2.5,0)●D(-2.5,0)根據(jù)題意得,A(0,1.25),頂點B(1,2.25).根據(jù)對稱性,那么水池的半徑至少要2.5m,才能使噴出的水流不致落到池外.解:(1)如圖,建立如圖所示的坐標(biāo)系,當(dāng)y=0時,得點C(2數(shù)學(xué)化xyOA●B(1.57,3.72)●(0,1.25)●C(3.5,0)●D(-3.5,0)解:(2)根據(jù)題意得,A(0,1.25),C(3.5,0).由此可知,如果不計其它因素,那么水流的最大高度應(yīng)達到約3.72m.設(shè)拋物線為y=-(x-h)2+k,由待定系數(shù)法求得拋物線為:y=-(x-11/7)2+729/196.因此,拋物線頂點為B(1.57,3.72)數(shù)學(xué)化xyOA●B(1.57,3.72)●(0,1.25)課后延伸1.關(guān)于二次函數(shù)y=ax2+bx+c的圖象有下列命題:①當(dāng)c=0時,函數(shù)的圖象經(jīng)過原點;②當(dāng)c>0且函數(shù)圖象開口向下時,方程ax2+bx+c=0必有兩個不等實根;③當(dāng)a<0,函數(shù)的圖象最高點的縱坐標(biāo)是

;④當(dāng)b=0時,函數(shù)的圖象關(guān)于y軸對稱.其中正確命題的個數(shù)有(

)A.1個 B.2個 C.3個 D.4個2.某類產(chǎn)品按質(zhì)量共分為10個檔次,生產(chǎn)最低檔次產(chǎn)品每件利潤為8元,如果每提高一個檔次每件利潤增加2元.用同樣的工時,最低檔次產(chǎn)品每天可生產(chǎn)60件,每提高一個檔次將少生產(chǎn)3件,求生產(chǎn)何種檔次的產(chǎn)品利潤最大?3.將進貨為40元的某種商品按50元一個售出時,能賣出500個.已知這時商品每漲價一元,其銷售數(shù)就要減少20個.為了獲得最大利益,售價應(yīng)定為多少?課后延伸1.關(guān)于二次函數(shù)y=ax2+bx+c的圖象有下列命題4.某商場銷售某種品牌的純牛奶,已知進價為每箱40元,生產(chǎn)廠家要求每箱售價在40元~70元之間.市場調(diào)查發(fā)現(xiàn),若每箱以50元銷售,平均每天可銷售90箱;價格每降低1元,平均每天多銷售3箱;價格每升高1元,平均每天少銷售3箱.(1)寫出平均每天銷售量y(箱)與每箱售價x(元)之間的函數(shù)表達式(注明范圍);(2)求出商場平均每天銷售這種年奶的利潤W(元)與每箱牛奶的售價x(元)之間的二次函數(shù)表達式;(每箱利潤=售價-進價)(3)求出(2)中二次函數(shù)圖象的頂點坐標(biāo),并求出當(dāng)x=40,70時W的值,在直角坐標(biāo)系中畫出函數(shù)圖象的草圖;(4)由函數(shù)圖象可以看出,當(dāng)牛奶售價為多少時,平均每天的利潤最大?最大利潤是多少?4.某商場銷售某種品牌的純牛奶,已知進價為每箱40元,生產(chǎn)廠§2.6何時獲得最大利潤§2.6學(xué)習(xí)目標(biāo):1.能解決二次函數(shù)實際問題中的最值.2.應(yīng)用二次函數(shù)解決實際問題,掌握實際問題中變量之間的二次函數(shù)關(guān)系,并運用二次函數(shù)的知識求出實際問題的最大值、最小值。學(xué)習(xí)目標(biāo):1.能解決二次函數(shù)實際問題中的最值.頂點式、對稱軸和頂點坐標(biāo)公式:

回顧舊知獨學(xué)獨研:頂點式、對稱軸和頂點坐標(biāo)公式:回顧舊知獨學(xué)獨研:利潤=總利潤=

回顧舊知售價-進價每件利潤×銷售額利潤=總利潤=回顧舊知售價-進價每件利潤×銷售額銷售單價是多少時,可以獲利最多?何時獲得最大利潤

例1:某商店經(jīng)營T恤衫,已知成批購進時單價是2.5元.根據(jù)市場調(diào)查,銷售量與銷售單價滿足如下關(guān)系:在某一時間內(nèi),單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售出200件.

新知探究銷售單價是多少時,可以獲利最多?何時獲得最大利潤例1:某解:設(shè)銷售價為x元(x≤13.5元),那么某商店經(jīng)營T恤衫,已知成批購進時單價是2.5元.根據(jù)市場調(diào)查,銷售量與單價滿足如下關(guān)系:在一時間內(nèi),單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售出200件.銷售量可表示為:

件;每件T恤衫的利潤為:

元;所獲總利潤可表示為:

元;∴當(dāng)銷售單價為

元時,可以獲得最大利潤,最大利潤是

元.解:設(shè)銷售價為x元(x≤13.5元),那么某商店經(jīng)營T恤衫,我們還曾經(jīng)利用列表的方法得到一個猜測,現(xiàn)在請你驗證一下你的猜測(增種多少棵橙子樹時,總產(chǎn)量最大?)是否正確。與同伴進行交流你是怎么做的。還記得本章一開始的“種多少棵橙子樹”的問題嗎?合作交流我們還曾經(jīng)利用列表的方法得到一個猜測,現(xiàn)在請你驗證一下你的猜某果園有100棵橙子樹,每一棵樹平均結(jié)600個橙子.現(xiàn)準(zhǔn)備多種一些橙子樹以提高產(chǎn)量,但是如果多種樹,那么樹之間的距離和每一棵樹所接受的陽光就會減少.根據(jù)經(jīng)驗估計,每多種一棵樹,平均每棵樹就會少結(jié)5個橙子.在上述問題中,種多少棵橙子樹,可以使果園橙子的總產(chǎn)量最多?x/棵1234567y/個60095601806025560320603756042060455x/棵891011121314y/個60480604956050060495604806045560420當(dāng)增種10棵橙子樹時,可以使果園橙子總產(chǎn)量最多。某果園有100棵橙子樹,每一棵樹平均結(jié)600個橙子.現(xiàn)準(zhǔn)備多例2:某果園有100棵橙子樹,每一棵樹平均結(jié)600個橙子.現(xiàn)準(zhǔn)備多種一些橙子樹以提高產(chǎn)量,據(jù)經(jīng)驗估計,每多種2棵樹,平均每棵樹就會少結(jié)10個橙子.(1)種多少棵橙子樹,可以使果園橙子的總產(chǎn)量最多?最多為多少?(2)增種多少棵橙子,可以使橙子的總產(chǎn)量在60400個以上?例2:某果園有100棵橙子樹,每一棵樹平均結(jié)600個橙子.現(xiàn)

(1)解:假設(shè)果園增種x棵橙子樹,果園共有(100+x)棵樹,平均每棵樹結(jié)(600-5x)個橙子,果園橙子的總產(chǎn)量y=(100+x)(600-5x)=-5(x-10)2+60500當(dāng)x=10時,y有最大值,最大值60500∴果園種植110棵橙子樹時,果園橙子的總產(chǎn)量最大,最大為60500=-5x2+100x+60000.(1)解:假設(shè)果園增種x棵橙子樹,果園共有(100+x)棵(2)增種多少棵橙子,可以使橙子的總產(chǎn)量在60400個以上?答:增種6~14棵橙子樹,可以使橙子的總產(chǎn)量在60400個以上.得-5(x-10)2+60500=60400(2)解:當(dāng)y=60400時,解得:(2)增種多少棵橙子,可以使橙子的總產(chǎn)量在60400個以上?某商店購進一批單價為20元的日用品,如果以單價30元銷售,那么半個月內(nèi)可以售出400件。根據(jù)銷售經(jīng)驗,提高銷售單價會導(dǎo)致銷售量的減少,即銷售單價每提高1元,銷售量相應(yīng)減少20件。如何提高售價,才能在半個月內(nèi)獲得最大利潤?隨堂練習(xí)

某商店購進一批單價為20元的日用品,如果以單價30元銷二次函數(shù)銷售方面的問題1二元一次函數(shù)應(yīng)用課件

3,龍城公園要建造圓形噴水池.在水池中央垂直于水面處安裝一個柱子OA,O恰在水面中心,OA=1.25m.由柱子頂端A處的噴頭向外噴水,水流在各個方向沿形狀相同的拋物線落下,為使水流形狀較為漂亮,要求設(shè)計成水流在離OA距離為1m處達到最大高度2.25m.(1)如果不計其它因素,那么水池的半徑至少要多少m,才能使噴出的水流不致落到池外?(2)若水流噴出的拋物線形狀與(1)相同,水池的半徑為3.5m,要使水流不落到池外,此時水流的最大高度應(yīng)達到多少m(精確0.1m)?3,龍城公園要建造圓形噴水池.在水池中央垂直于水面處解:(1)如圖,建立如圖所示的坐標(biāo)系,當(dāng)y=0時,得點C(2.5,0);同理,點D(-2.5,0).設(shè)拋物線為y=a(x-1)2+2.25,由待定系數(shù)法可求得拋物線表達式為:y=-(x-1)2+2.25.數(shù)學(xué)化xyOA●B(1,2.25)●(0,1.25)●C(2.5,0)●D(-2.5,0)根據(jù)題意得,A(0,1.25),頂點B(1,2.25).根據(jù)對稱性,那么水池的半徑至少要2.5m,才能使噴出的水流不致落到池外.解:(1)如圖,建立如圖所示的坐標(biāo)系,當(dāng)y=0時,得點C(2數(shù)學(xué)化xyOA●B(1.57,3.72)●(0,1.25)●C(3.5,0)●D(-3.5,0)解:(2)根據(jù)題意得,A(0,1.25),C(3.5,0).由此可知,如果不計其它因素,那么水流的最大高度應(yīng)達到約3.72m.設(shè)拋物線為y=-(x-h)2+k,由待定系數(shù)法求得拋物線為:y=-(x-11/7)2+729/196.因此,拋物線頂點為B(1.57,3.72)數(shù)學(xué)化xyOA●B(1.57,3.72)●(0,1.25)課后延伸1.關(guān)于二次函數(shù)y=ax2+bx+c的圖象有下列命題:①當(dāng)c=0時,函數(shù)的圖象經(jīng)過原點;②當(dāng)c>0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論