版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
本文格式為Word版,下載可任意編輯——初三數(shù)學(xué)下冊知識(shí)點(diǎn)學(xué)習(xí)這件事不在乎有沒有人教你,最重要的是在于你自己有沒有覺悟和恒心。任何科目(學(xué)習(xí)(方法))其實(shí)都是一樣的,不斷的記憶與練習(xí),使學(xué)識(shí)刻在腦海里。下面是我給大家整理的一些初三數(shù)學(xué)學(xué)識(shí)點(diǎn),夢想對大家有所扶助。
九年級(jí)下冊數(shù)學(xué)學(xué)識(shí)點(diǎn)歸納
學(xué)識(shí)點(diǎn)1.概念
把外形一致的圖形叫做好像圖形。(即對應(yīng)角相等、對應(yīng)邊的比也相等的圖形)
解讀:(1)兩個(gè)圖形好像,其中一個(gè)圖形可以看做由另一個(gè)圖形放大或縮小得到.
(2)全等形可以看成是一種特殊的好像,即不僅外形一致,大小也一致.
(3)判斷兩個(gè)圖形是否好像,就是看這兩個(gè)圖形是不是外形一致,與其他因素?zé)o關(guān).
學(xué)識(shí)點(diǎn)2.比例線段
對于四條線段a,b,c,d,假設(shè)其中兩條線段的長度的比與另兩條線段的長度的比相等,即(或a:b=c:d)那么這四條線段叫做成比例線段,簡稱比例線段.
學(xué)識(shí)點(diǎn)3.好像多邊形的性質(zhì)
好像多邊形的性質(zhì):好像多邊形的對應(yīng)角相等,對應(yīng)邊的比相等.
解讀:(1)正確理解好像多邊形的定義,明確“對應(yīng)”關(guān)系.
(2)明確好像多邊形的“對應(yīng)”來自于書寫,且要明確好像比具有依次性.
學(xué)識(shí)點(diǎn)4.好像三角形的概念
對應(yīng)角相等,對應(yīng)邊之比相等的三角形叫做好像三角形.
解讀:(1)好像三角形是好像多邊形中的一種;
(2)應(yīng)結(jié)合好像多邊形的性質(zhì)來理解好像三角形;
(3)好像三角形應(yīng)得志外形一樣,但大小可以不同;
(4)好像用“∽”表示,讀作“好像于”;
(5)好像三角形的對應(yīng)邊之比叫做好像比.
學(xué)識(shí)點(diǎn)5.好像三角的判定方法
(1)定義:對應(yīng)角相等,對應(yīng)邊成比例的兩個(gè)三角形好像;
(2)平行于三角形一邊的直線截其他兩邊(或其他兩邊的延長線)所構(gòu)成的三角形與原三角形好像.
(3)假設(shè)一個(gè)三角形的兩個(gè)角分別與另一個(gè)三角形的兩個(gè)角對應(yīng)相等,那么這兩個(gè)三角形好像.
(4)假設(shè)一個(gè)三角的兩條邊與另一個(gè)三角形的兩條邊對應(yīng)成比例,并且夾角相等,那么這兩個(gè)三角形好像.
(5)假設(shè)一個(gè)三角形的三條邊分別與另一個(gè)三角形的三條邊對應(yīng)成比例,那么這兩個(gè)三角形好像.
(6)直角三角形被斜邊上的高分成的兩個(gè)直角三角形與原三角形都好像.
學(xué)識(shí)點(diǎn)6.好像三角形的性質(zhì)
(1)對應(yīng)角相等,對應(yīng)邊的比相等;
(2)對應(yīng)高的比,對應(yīng)中線的比,對應(yīng)角平分線的比都等于好像比;
(3)好像三角形周長之比等于好像比;面積之比等于好像比的平方.
(4)射影定理
九年級(jí)下冊數(shù)學(xué)學(xué)識(shí)點(diǎn)(總結(jié))
直線與圓的位置關(guān)系
①直線和圓無公共點(diǎn),稱相離。AB與圓O相離,dr。
②直線和圓有兩個(gè)公共點(diǎn),稱相交,這條直線叫做圓的割線。AB與⊙O相交,d
③直線和圓有且只有一公共點(diǎn),稱相切,這條直線叫做圓的切線,這個(gè)的公共點(diǎn)叫做切點(diǎn)。AB與⊙O相切,d=r。(d為圓心到直線的距離)
平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的方程
假設(shè)b^2-4ac0,那么圓與直線有2交點(diǎn),即圓與直線相交。
假設(shè)b^2-4ac=0,那么圓與直線有1交點(diǎn),即圓與直線相切。
假設(shè)b^2-4ac0,那么圓與直線有0交點(diǎn),即圓與直線相離。
2.假設(shè)B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時(shí)的兩個(gè)x值x1、x2,并且規(guī)定x1
當(dāng)x=-C/Ax2時(shí),直線與圓相離;
旋轉(zhuǎn)變換
1.概念:在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)叫做旋轉(zhuǎn)。
說明:(1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所抉擇的;(2)旋轉(zhuǎn)過程中旋轉(zhuǎn)中心始終保持不動(dòng).(3)旋轉(zhuǎn)過程中旋轉(zhuǎn)的方向是一致的.(4)旋轉(zhuǎn)過程靜止時(shí),圖形上一個(gè)點(diǎn)的旋轉(zhuǎn)角度是一樣的.⑤旋轉(zhuǎn)不變更圖形的大小和外形.
2.性質(zhì):(1)對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;
(2)對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;
(3)旋轉(zhuǎn)前、后的圖形全等.
3.旋轉(zhuǎn)作圖的步驟和方法:(1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;(2)找出圖形的關(guān)鍵點(diǎn);(3)將圖形的關(guān)鍵點(diǎn)和旋轉(zhuǎn)中心連接起來,然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個(gè)旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點(diǎn)的對應(yīng)點(diǎn);(4)按原圖形順次連接這些對應(yīng)點(diǎn),所得到的圖形就是旋轉(zhuǎn)后的圖形.
說明:在旋轉(zhuǎn)作圖時(shí),一對對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角.
初三(數(shù)學(xué)學(xué)習(xí)方法)
1、“方程”的思想
數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見的等量關(guān)系就是“方程”。譬如等速運(yùn)動(dòng)中,路程、速度和時(shí)間三者之間就有一種等量關(guān)系,可以建立一個(gè)相關(guān)等式:速度.時(shí)間=路程,在這樣的等式中,一般會(huì)有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學(xué)就已經(jīng)接觸過簡易方程,而初一那么對比系統(tǒng)地學(xué)習(xí)解一元一次方程,并總結(jié)出解一元一次方程的五個(gè)步驟。假設(shè)學(xué)會(huì)并掌管了這五個(gè)步驟,任何一個(gè)一元一次方程都能順?biāo)斓亟獬鰜?。初二、初三我們還將學(xué)習(xí)解一元二次方程、二元二次方程組、簡樸的三角方程;到了高中我們還將學(xué)習(xí)指數(shù)方程、對數(shù)方程、線性方程組、、參數(shù)方程、極坐標(biāo)方程等。解這些方程的思維幾乎一致,都是通過確定的方法將它們轉(zhuǎn)化成一元一次方程或一元二次方程的形式,然后用大家熟諳的解一元一次方程的五個(gè)步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恒,化學(xué)中的化學(xué)平衡式,現(xiàn)實(shí)中的大量實(shí)際應(yīng)用,都需要建立方程,通過解方程來求出結(jié)果。因此,同學(xué)們確定要將解一元一次方程和解一元二次方程學(xué)好,進(jìn)而學(xué)好(其它)形式的方程。
所謂的“方程”思想就是對于數(shù)學(xué)問題,更加是現(xiàn)實(shí)當(dāng)中碰見的未知量和已知量的錯(cuò)綜繁雜的關(guān)系,擅長用“方程”的觀點(diǎn)去構(gòu)建有關(guān)的方程,進(jìn)而用解方程的方法去解決它。
2、“數(shù)形結(jié)合”的思想
大千世界,“數(shù)”與“形”無處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下外形和大小這兩個(gè)屬性,就交給數(shù)學(xué)去研究了。初中數(shù)學(xué)的兩個(gè)分支棗-代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結(jié)合”是一種趨勢,越學(xué)下去,“數(shù)”與“形”越密不成分,到了高中,就展現(xiàn)了特意用代數(shù)方法去研究幾何問題的一門課,叫做“解析幾何”。在初三,建立平面直角坐標(biāo)系后,研究函數(shù)的問題就離不開圖象了。往往借助圖象能使問題明朗化,對比輕易找到問題的關(guān)鍵所在,從而解決問題。在今后的數(shù)學(xué)學(xué)習(xí)中,要重視“數(shù)形結(jié)合”的(思維訓(xùn)練),任何一道題,只要與“形”沾得上一點(diǎn)邊,就理應(yīng)根據(jù)題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強(qiáng),輕易找出切入點(diǎn),對解題大有利益。嘗到甜頭的人逐漸會(huì)養(yǎng)成一種“數(shù)形結(jié)合”的好習(xí)慣。
3、“對應(yīng)”的思想
“對應(yīng)”的思想由來已久,譬如我們將一支鉛筆、一本書、一棟房子對應(yīng)一個(gè)抽象的數(shù)“1”,將兩只眼睛、一對耳環(huán)、雙胞胎對應(yīng)一個(gè)抽象的數(shù)“2”;隨著學(xué)習(xí)的深入,我們還將“對應(yīng)”擴(kuò)展到對應(yīng)一種形式,對應(yīng)一種關(guān)系,等等。譬如我們
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江師范大學(xué)《規(guī)范字與書法》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州體育職業(yè)學(xué)院《視頻傳播實(shí)務(wù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 長春師范大學(xué)《社會(huì)治理》2023-2024學(xué)年第一學(xué)期期末試卷
- 榆林職業(yè)技術(shù)學(xué)院《戶外拓展與定向運(yùn)動(dòng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 食用菌栽培基質(zhì)廢棄物降解
- 碩士職場競爭力
- 秋分節(jié)氣與糧食安全
- 農(nóng)業(yè)創(chuàng)新路演
- 學(xué)校文化建設(shè)上墻標(biāo)語
- 會(huì)計(jì)辭職報(bào)告范文
- 華為經(jīng)營管理-華為市場營銷體系(6版)
- 2023年中國育齡女性生殖健康研究報(bào)告
- 鋼結(jié)構(gòu)加工廠考察報(bào)告
- 發(fā)電機(jī)檢修作業(yè)指導(dǎo)書
- 薪酬與福利管理實(shí)務(wù)-習(xí)題答案 第五版
- 廢舊物資處置申請表
- GB/T 37234-2018文件鑒定通用規(guī)范
- GB/T 31888-2015中小學(xué)生校服
- 質(zhì)量檢查考核辦法
- 云南省普通初中學(xué)生成長記錄-基本素質(zhì)發(fā)展初一-初三
- 外科醫(yī)師手術(shù)技能評(píng)分標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論