安徽省黃山市重點(diǎn)名校2023學(xué)年中考數(shù)學(xué)適應(yīng)性模擬試題含答案解析_第1頁
安徽省黃山市重點(diǎn)名校2023學(xué)年中考數(shù)學(xué)適應(yīng)性模擬試題含答案解析_第2頁
安徽省黃山市重點(diǎn)名校2023學(xué)年中考數(shù)學(xué)適應(yīng)性模擬試題含答案解析_第3頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

安徽省黃山市重點(diǎn)名校2023學(xué)年中考數(shù)學(xué)適應(yīng)性模擬測(cè)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.測(cè)試卷所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.工人師傅用一張半徑為24cm,圓心角為150°的扇形鐵皮做成一個(gè)圓錐的側(cè)面,則這個(gè)圓錐的高為()cm.A. B. C. D.2.根據(jù)如圖所示的程序計(jì)算函數(shù)y的值,若輸入的x值是4或7時(shí),輸出的y值相等,則b等于()A.9 B.7 C.﹣9 D.﹣73.某種電子元件的面積大約為0.00000069平方毫米,將0.00000069這個(gè)數(shù)用科學(xué)記數(shù)法表示正確的是()A.0.69×10﹣6 B.6.9×10﹣7 C.69×10﹣8 D.6.9×1074.如圖,?ABCD的對(duì)角線AC、BD相交于點(diǎn)O,且AC+BD=16,CD=6,則△ABO的周長(zhǎng)是()A.10 B.14 C.20 D.225.根據(jù)在“一帶一路”國(guó)際合作高峰論壇開幕式上的演講,中國(guó)將在未來3年向參與“一帶一路”建設(shè)的發(fā)展中國(guó)家和國(guó)際組織提供60000000000元人民幣援助,建設(shè)更多民生項(xiàng)目,其中數(shù)據(jù)60000000000用科學(xué)記數(shù)法表示為()A.0.6×1010 B.0.6×1011 C.6×1010 D.6×10116.已知反比例函數(shù)y=的圖象在一、三象限,那么直線y=kx﹣k不經(jīng)過第()象限.A.一 B.二 C.三 D.四7.把多項(xiàng)式x2+ax+b分解因式,得(x+1)(x-3),則a、b的值分別是()A.a(chǎn)=2,b=3 B.a(chǎn)=-2,b=-3C.a(chǎn)=-2,b=3 D.a(chǎn)=2,b=-38.下列調(diào)查中,調(diào)查方式選擇合理的是()A.為了解襄陽市初中每天鍛煉所用時(shí)間,選擇全面調(diào)查B.為了解襄陽市電視臺(tái)《襄陽新聞》欄目的收視率,選擇全面調(diào)查C.為了解神舟飛船設(shè)備零件的質(zhì)量情況,選擇抽樣調(diào)查D.為了解一批節(jié)能燈的使用壽命,選擇抽樣調(diào)查9.下列命題中假命題是()A.正六邊形的外角和等于 B.位似圖形必定相似C.樣本方差越大,數(shù)據(jù)波動(dòng)越小 D.方程無實(shí)數(shù)根10.如圖,在⊙O中,弦BC=1,點(diǎn)A是圓上一點(diǎn),且∠BAC=30°,則的長(zhǎng)是()A.π B. C. D.11.如圖,已知在△ABC,AB=AC.若以點(diǎn)B為圓心,BC長(zhǎng)為半徑畫弧,交腰AC于點(diǎn)E,則下列結(jié)論一定正確的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE12.在△ABC中,∠C=90°,sinA=,則tanB等于()A. B.C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.某學(xué)校組織學(xué)生到首鋼西十冬奧廣場(chǎng)開展綜合實(shí)踐活動(dòng),數(shù)學(xué)小組的同學(xué)們?cè)诰鄪W組委辦公樓(原首鋼老廠區(qū)的筒倉)20m的點(diǎn)B處,用高為0.8m的測(cè)角儀測(cè)得筒倉頂點(diǎn)C的仰角為63°,則筒倉CD的高約為______m.(精確到0.1m,sin63°≈0.89,cos63°≈0.45,tan63°≈1.96)14.已知直線y=kx(k≠0)經(jīng)過點(diǎn)(12,﹣5),將直線向上平移m(m>0)個(gè)單位,若平移后得到的直線與半徑為6的⊙O相交(點(diǎn)O為坐標(biāo)原點(diǎn)),則m的取值范圍為_____.15.如圖,Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分線與AC交于點(diǎn)D,與AB交于點(diǎn)E,連接BD.若AD=14,則BC的長(zhǎng)為_____.16.如果一個(gè)正多邊形的中心角為72°,那么這個(gè)正多邊形的邊數(shù)是.17.我國(guó)自主研發(fā)的某型號(hào)手機(jī)處理器采用10nm工藝,已知1nm=0.000000001m,則10nm用科學(xué)記數(shù)法可表示為_____m.18.已知一元二次方程2x2﹣5x+1=0的兩根為m,n,則m2+n2=_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)一天晚上,李明利用燈光下的影子長(zhǎng)來測(cè)量一路燈D的高度.如圖,當(dāng)在點(diǎn)A處放置標(biāo)桿時(shí),李明測(cè)得直立的標(biāo)桿高AM與影子長(zhǎng)AE正好相等,接著李明沿AC方向繼續(xù)向前走,走到點(diǎn)B處放置同一個(gè)標(biāo)桿,測(cè)得直立標(biāo)桿高BN的影子恰好是線段AB,并測(cè)得AB=1.2m,已知標(biāo)桿直立時(shí)的高為1.8m,求路燈的高CD的長(zhǎng).20.(6分)已知,關(guān)于x的方程x2+2x-k=0有兩個(gè)不相等的實(shí)數(shù)根.(1)求k的取值范圍;(2)若x1,x2是這個(gè)方程的兩個(gè)實(shí)數(shù)根,求的值;(3)根據(jù)(2)的結(jié)果你能得出什么結(jié)論?21.(6分)綜合與探究:如圖1,拋物線y=﹣x2+x+與x軸分別交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C點(diǎn).經(jīng)過點(diǎn)A的直線l與y軸交于點(diǎn)D(0,﹣).(1)求A、B兩點(diǎn)的坐標(biāo)及直線l的表達(dá)式;(2)如圖2,直線l從圖中的位置出發(fā),以每秒1個(gè)單位的速度沿x軸的正方向運(yùn)動(dòng),運(yùn)動(dòng)中直線l與x軸交于點(diǎn)E,與y軸交于點(diǎn)F,點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)為A′,連接FA′、BA′,設(shè)直線l的運(yùn)動(dòng)時(shí)間為t(t>0)秒.探究下列問題:①請(qǐng)直接寫出A′的坐標(biāo)(用含字母t的式子表示);②當(dāng)點(diǎn)A′落在拋物線上時(shí),求直線l的運(yùn)動(dòng)時(shí)間t的值,判斷此時(shí)四邊形A′BEF的形狀,并說明理由;(3)在(2)的條件下,探究:在直線l的運(yùn)動(dòng)過程中,坐標(biāo)平面內(nèi)是否存在點(diǎn)P,使得以P,A′,B,E為頂點(diǎn)的四邊形為矩形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.22.(8分)一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時(shí)發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號(hào),一艘在港口正東方向的海警船接到求救信號(hào),測(cè)得事故船在它的北偏東37°方向,馬上以40海里每小時(shí)的速度前往救援,求海警船到大事故船C處所需的大約時(shí)間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)23.(8分)(1)問題發(fā)現(xiàn)如圖1,在Rt△ABC中,∠A=90°,=1,點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接CD.(1)①求的值;②求∠ACD的度數(shù).(2)拓展探究如圖2,在Rt△ABC中,∠A=90°,=k.點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接CD,請(qǐng)判斷∠ACD與∠B的數(shù)量關(guān)系以及PB與CD之間的數(shù)量關(guān)系,并說明理由.(3)解決問題如圖3,在△ABC中,∠B=45°,AB=4,BC=12,P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若PA=5,請(qǐng)直接寫出CD的長(zhǎng).24.(10分)如圖,在△ABC中,∠A=45°,以AB為直徑的⊙O經(jīng)過AC的中點(diǎn)D,E為⊙O上的一點(diǎn),連接DE,BE,DE與AB交于點(diǎn)F.求證:BC為⊙O的切線;若F為OA的中點(diǎn),⊙O的半徑為2,求BE的長(zhǎng).25.(10分)(1)解方程:x2﹣4x﹣3=0;(2)解不等式組:x-3(x-2)≤426.(12分)我國(guó)古代數(shù)學(xué)著作《增刪算法統(tǒng)宗》記載“官兵分布”問題:“一千官軍一千布,一官四疋無零數(shù),四軍才分布一疋,請(qǐng)問官軍多少數(shù).”其大意為:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.問官和兵各幾人?27.(12分)如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點(diǎn)D,過點(diǎn)D作DE⊥AC,垂足為E.(1)證明:DE為⊙O的切線;(2)連接DC,若BC=4,求弧DC與弦DC所圍成的圖形的面積.

2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【答案解析】分析:直接利用圓錐的性質(zhì)求出圓錐的半徑,進(jìn)而利用勾股定理得出圓錐的高.詳解:由題意可得圓錐的母線長(zhǎng)為:24cm,設(shè)圓錐底面圓的半徑為:r,則2πr=,解得:r=10,故這個(gè)圓錐的高為:(cm).故選B.點(diǎn)睛:此題主要考查了圓錐的計(jì)算,正確得出圓錐的半徑是解題關(guān)鍵.2、C【答案解析】

先求出x=7時(shí)y的值,再將x=4、y=-1代入y=2x+b可得答案.【題目詳解】∵當(dāng)x=7時(shí),y=6-7=-1,∴當(dāng)x=4時(shí),y=2×4+b=-1,解得:b=-9,故選C.【答案點(diǎn)睛】本題主要考查函數(shù)值,解題的關(guān)鍵是掌握函數(shù)值的計(jì)算方法.3、B【答案解析】測(cè)試卷解析:0.00000069=6.9×10-7,故選B.點(diǎn)睛:絕對(duì)值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.4、B【答案解析】

直接利用平行四邊形的性質(zhì)得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的長(zhǎng),進(jìn)而得出答案.【題目詳解】∵四邊形ABCD是平行四邊形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周長(zhǎng)是:1.故選B.【答案點(diǎn)睛】平行四邊形的性質(zhì)掌握要熟練,找到等值代換即可求解.5、C【答案解析】

解:將60000000000用科學(xué)記數(shù)法表示為:6×1.故選C.【答案點(diǎn)睛】本題考查科學(xué)記數(shù)法—表示較大的數(shù),掌握科學(xué)計(jì)數(shù)法的一般形式是解題關(guān)鍵.6、B【答案解析】

根據(jù)反比例函數(shù)的性質(zhì)得k>0,然后根據(jù)一次函數(shù)的進(jìn)行判斷直線y=kx-k不經(jīng)過的象限.【題目詳解】∵反比例函數(shù)y=的圖象在一、三象限,∴k>0,∴直線y=kx﹣k經(jīng)過第一、三、四象限,即不經(jīng)過第二象限.故選:B.【答案點(diǎn)睛】考查了待定系數(shù)法求反比例函數(shù)的解析式:設(shè)出含有待定系數(shù)的反比例函數(shù)解析式y(tǒng)=(k為常數(shù),k≠0);把已知條件(自變量與函數(shù)的對(duì)應(yīng)值)代入解析式,得到待定系數(shù)的方程;解方程,求出待定系數(shù);寫出解析式.也考查了反比例函數(shù)與一次函數(shù)的性質(zhì).7、B【答案解析】分析:根據(jù)整式的乘法,先還原多項(xiàng)式,然后對(duì)應(yīng)求出a、b即可.詳解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故選B.點(diǎn)睛:此題主要考查了整式的乘法和因式分解的關(guān)系,利用它們之間的互逆運(yùn)算的關(guān)系是解題關(guān)鍵.8、D【答案解析】

A.為了解襄陽市初中每天鍛煉所用時(shí)間,選擇抽樣調(diào)查,故A不符合題意;B.為了解襄陽市電視臺(tái)《襄陽新聞》欄目的收視率,選擇抽樣調(diào)查,故B不符合題意;C.為了解神舟飛船設(shè)備零件的質(zhì)量情況,選普查,故C不符合題意;D.為了解一批節(jié)能燈的使用壽命,選擇抽樣調(diào)查,故D符合題意;故選D.9、C【答案解析】測(cè)試卷解析:A、正六邊形的外角和等于360°,是真命題;B、位似圖形必定相似,是真命題;C、樣本方差越大,數(shù)據(jù)波動(dòng)越小,是假命題;D、方程x2+x+1=0無實(shí)數(shù)根,是真命題;故選:C.考點(diǎn):命題與定理.10、B【答案解析】

連接OB,OC.首先證明△OBC是等邊三角形,再利用弧長(zhǎng)公式計(jì)算即可.【題目詳解】解:連接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=1,∴的長(zhǎng)=,故選B.【答案點(diǎn)睛】考查弧長(zhǎng)公式,等邊三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,屬于中考??碱}型.11、C【答案解析】解:∵AB=AC,∴∠ABC=∠ACB.∵以點(diǎn)B為圓心,BC長(zhǎng)為半徑畫弧,交腰AC于點(diǎn)E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故選C.點(diǎn)睛:本題考查了等腰三角形的性質(zhì),當(dāng)?shù)妊切蔚牡捉菍?duì)應(yīng)相等時(shí)其頂角也相等,難度不大.12、B【答案解析】法一,依題意△ABC為直角三角形,∴∠A+∠B=90°,∴cosB=,∵,∴sinB=,∵tanB==故選B法2,依題意可設(shè)a=4,b=3,則c=5,∵tanb=故選B二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、40.0【答案解析】

首先過點(diǎn)A作AE∥BD,交CD于點(diǎn)E,易證得四邊形ABDE是矩形,即可得AE=BD=20m,DE=AB=0.8m,然后Rt△ACE中,由三角函數(shù)的定義,而求得CE的長(zhǎng),繼而求得筒倉CD的高.【題目詳解】過點(diǎn)A作AE∥BD,交CD于點(diǎn)E,∵AB⊥BD,CD⊥BD,∴∠BAE=∠ABD=∠BDE=90°,∴四邊形ABDE是矩形,∴AE=BD=20m,DE=AB=0.8m,在Rt△ACE中,∠CAE=63°,∴CE=AE?tan63°=20×1.96≈39.2(m),∴CD=CE+DE=39.2+0.8=40.0(m).答:筒倉CD的高約40.0m,故答案為:40.0【答案點(diǎn)睛】此題考查解直角三角形的應(yīng)用?仰角的定義,注意能借助仰角構(gòu)造直角三角形并解直角三角形是解此題的關(guān)鍵,注意數(shù)形結(jié)合思想的應(yīng)用.14、0<m<【答案解析】【分析】利用待定系數(shù)法得出直線解析式,再得出平移后得到的直線,求與坐標(biāo)軸交點(diǎn)的坐標(biāo),轉(zhuǎn)化為直角三角形中的問題,再由直線與圓的位置關(guān)系的判定解答.【題目詳解】把點(diǎn)(12,﹣5)代入直線y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)個(gè)單位后得到的直線l所對(duì)應(yīng)的函數(shù)關(guān)系式為y=﹣x+m(m>0),設(shè)直線l與x軸、y軸分別交于點(diǎn)A、B,(如圖所示)當(dāng)x=0時(shí),y=m;當(dāng)y=0時(shí),x=m,∴A(m,0),B(0,m),即OA=m,OB=m,在Rt△OAB中,AB=,過點(diǎn)O作OD⊥AB于D,∵S△ABO=OD?AB=OA?OB,∴OD?=×m×m,∵m>0,解得OD=m,由直線與圓的位置關(guān)系可知m<6,解得m<,故答案為0<m<.【答案點(diǎn)睛】本題考查了直線的平移、直線與圓的位置關(guān)系等,能用含m的式子表示出原點(diǎn)到平移后的直線的距離是解題的關(guān)鍵.本題有一定的難度,利用數(shù)形結(jié)合思想進(jìn)行解答比較直觀明了.15、1【答案解析】解:∵DE是AB的垂直平分線,∴AD=BD=14,∴∠A=∠ABD=15°,∴∠BDC=∠A+∠ABD=15°+15°=30°.在Rt△BCD中,BC=BD=×14=1.故答案為1.點(diǎn)睛:本題考查了線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),30°角所對(duì)的直角邊等于斜邊的一半的性質(zhì),熟記性質(zhì)是解答本題的關(guān)鍵.16、5【答案解析】測(cè)試卷分析:中心角的度數(shù)=,考點(diǎn):正多邊形中心角的概念.17、1×10﹣1【答案解析】

絕對(duì)值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.【題目詳解】解:10nm用科學(xué)記數(shù)法可表示為1×10-1m,

故答案為1×10-1.【答案點(diǎn)睛】本題考查用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.18、【答案解析】

先由根與系數(shù)的關(guān)系得:兩根和與兩根積,再將m2+n2進(jìn)行變形,化成和或積的形式,代入即可.【題目詳解】由根與系數(shù)的關(guān)系得:m+n=,mn=,∴m2+n2=(m+n)2-2mn=()2-2×=,故答案為:.【答案點(diǎn)睛】本題考查了利用根與系數(shù)的關(guān)系求代數(shù)式的值,先將一元二次方程化為一般形式,寫出兩根的和與積的值,再將所求式子進(jìn)行變形;如、x12+x22等等,本題是常考題型,利用完全平方公式進(jìn)行轉(zhuǎn)化.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、路燈高CD為5.1米.【答案解析】

根據(jù)AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,從而得到△ABN∽△ACD,利用相似三角形對(duì)應(yīng)邊的比相等列出比例式求解即可.【題目詳解】設(shè)CD長(zhǎng)為x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x米,∴△ABN∽△ACD,∴=,即,解得:x=5.1.經(jīng)檢驗(yàn),x=5.1是原方程的解,∴路燈高CD為5.1米.【答案點(diǎn)睛】本題考查了相似三角形的應(yīng)用,解題的關(guān)鍵是根據(jù)已知條件得到平行線,從而證得相似三角形.20、(1)k>-1;(2)2;(3)k>-1時(shí),的值與k無關(guān).【答案解析】

(1)由題意得該方程的根的判別式大于零,列出不等式解答即可.(2)將要求的代數(shù)式通分相加轉(zhuǎn)化為含有兩根之和與兩根之積的形式,再根據(jù)根與系數(shù)的關(guān)系代數(shù)求值即可.(3)結(jié)合(1)和(2)結(jié)論可見,k>-1時(shí),的值為定值2,與k無關(guān).【題目詳解】(1)∵方程有兩個(gè)不等實(shí)根,∴△>0,即4+4k>0,∴k>-1(2)由根與系數(shù)關(guān)系可知x1+x2=-2,x1x2=-k,∴(3)由(1)可知,k>-1時(shí),的值與k無關(guān).【答案點(diǎn)睛】本題考查了一元二次方程的根的判別式,根與系數(shù)的關(guān)系等知識(shí),熟練掌握相關(guān)知識(shí)點(diǎn)是解答關(guān)鍵.21、(1)A(﹣1,0),B(3,0),y=﹣x﹣;(2)①A′(t﹣1,t);②A′BEF為菱形,見解析;(3)存在,P點(diǎn)坐標(biāo)為(,)或(,﹣).【答案解析】

(1)通過解方程﹣x2+x+=0得A(?1,0),B(3,0),然后利用待定系數(shù)法確定直線l的解析式;(2)①作A′H⊥x軸于H,如圖2,利用OA=1,OD=得到∠OAD=60°,再利用平移和對(duì)稱的性質(zhì)得到EA=EA′=t,∠A′EF=∠AEF=60°,然后根據(jù)含30度的直角三角形三邊的關(guān)系表示出A′H,EH即可得到A′的坐標(biāo);②把A′(t?1,t)代入y=?x2+x+得?(t?1)2+(t?1)+=t,解方程得到t=2,此時(shí)A′點(diǎn)的坐標(biāo)為(2,),E(1,0),然后通過計(jì)算得到AF=BE=2,A′F∥BE,從而判斷四邊形A′BEF為平行四邊形,然后加上EF=BE可判定四邊形A′BEF為菱形;(3)討論:當(dāng)A′B⊥BE時(shí),四邊形A′BEP為矩形,利用點(diǎn)A′和點(diǎn)B的橫坐標(biāo)相同得到t?1=3,解方程求出t得到A′(3,),再利用矩形的性質(zhì)可寫出對(duì)應(yīng)的P點(diǎn)坐標(biāo);當(dāng)A′B⊥EA′,如圖4,四邊形A′BPE為矩形,作A′Q⊥x軸于Q,先確定此時(shí)A′點(diǎn)的坐標(biāo),然后利用點(diǎn)的平移確定對(duì)應(yīng)P點(diǎn)坐標(biāo).【題目詳解】(1)當(dāng)y=0時(shí),﹣x2+x+=0,解得x1=﹣1,x2=3,則A(﹣1,0),B(3,0),設(shè)直線l的解析式為y=kx+b,把A(﹣1,0),D(0,﹣)代入得,解得,∴直線l的解析式為y=﹣x﹣;(2)①作A′H⊥x軸于H,如圖,∵OA=1,OD=,∴∠OAD=60°,∵EF∥AD,∴∠AEF=60°,∵點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)為A′,∴EA=EA′=t,∠A′EF=∠AEF=60°,在Rt△A′EH中,EH=EA′=t,A′H=EH=t,∴OH=OE+EH=t﹣1+t=t﹣1,∴A′(t﹣1,t);②把A′(t﹣1,t)代入y=﹣x2+x+得﹣(t﹣1)2+(t﹣1)+=t,解得t1=0(舍去),t2=2,∴當(dāng)點(diǎn)A′落在拋物線上時(shí),直線l的運(yùn)動(dòng)時(shí)間t的值為2;此時(shí)四邊形A′BEF為菱形,理由如下:當(dāng)t=2時(shí),A′點(diǎn)的坐標(biāo)為(2,),E(1,0),∵∠OEF=60°∴OF=OE=,EF=2OE=2,∴F(0,),∴A′F∥x軸,∵A′F=BE=2,A′F∥BE,∴四邊形A′BEF為平行四邊形,而EF=BE=2,∴四邊形A′BEF為菱形;(3)存在,如圖:當(dāng)A′B⊥BE時(shí),四邊形A′BEP為矩形,則t﹣1=3,解得t=,則A′(3,),∵OE=t﹣1=,∴此時(shí)P點(diǎn)坐標(biāo)為(,);當(dāng)A′B⊥EA′,如圖,四邊形A′BPE為矩形,作A′Q⊥x軸于Q,∵∠AEA′=120°,∴∠A′EB=60°,∴∠EBA′=30°∴BQ=A′Q=?t=t,∴t﹣1+t=3,解得t=,此時(shí)A′(1,),E(,0),點(diǎn)A′向左平移個(gè)單位,向下平移個(gè)單位得到點(diǎn)E,則點(diǎn)B(3,0)向左平移個(gè)單位,向下平移個(gè)單位得到點(diǎn)P,則P(,﹣),綜上所述,滿足條件的P點(diǎn)坐標(biāo)為(,)或(,﹣).【答案點(diǎn)睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、二次函數(shù)的性質(zhì)、菱形的判定和矩形的性質(zhì);會(huì)利用待定系數(shù)法求函數(shù)解析式;理解坐標(biāo)與圖形性質(zhì).22、小時(shí)【答案解析】

過點(diǎn)C作CD⊥AB交AB延長(zhǎng)線于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根據(jù)時(shí)間=路程÷速度即可求出海警船到大事故船C處所需的時(shí)間.【題目詳解】解:如圖,過點(diǎn)C作CD⊥AB交AB延長(zhǎng)線于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C處所需的時(shí)間大約為:50÷40=(小時(shí)).考點(diǎn):解直角三角形的應(yīng)用-方向角問題23、(1)1,45°;(2)∠ACD=∠B,=k;(3).【答案解析】

(1)根據(jù)已知條件推出△ABP≌△ACD,根據(jù)全等三角形的性質(zhì)得到PB=CD,∠ACD=∠B=45°,于是得到根據(jù)已知條件得到△ABC∽△APD,由相似三角形的性質(zhì)得到,得到ABP∽△CAD,根據(jù)相似三角形的性質(zhì)得到結(jié)論;過A作AH⊥BC于H,得到△ABH是等腰直角三角形,求得AH=BH=4,根據(jù)勾股定理得到根據(jù)相似三角形的性質(zhì)得到,推出△ABP∽△CAD,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【題目詳解】(1)∵∠A=90°,∴AB=AC,∴∠B=45°,∵∠PAD=90°,∠APD=∠B=45°,∴AP=AD,∴∠BAP=∠CAD,在△ABP與△ACD中,AB=AC,∠BAP=∠CAD,AP=AD,∴△ABP≌△ACD,∴PB=CD,∠ACD=∠B=45°,∴=1,(2)∵∠BAC=∠PAD=90°,∠B=∠APD,∴△ABC∽△APD,∵∠BAP+∠PAC=∠PAC+∠CAD=90°,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴∠ACD=∠B,(3)過A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=1,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴過A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=7,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴【答案點(diǎn)睛】本題考查了等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理,熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.24、(1)證明見解析;(2)【答案解析】

(1)連接BD,由圓周角性質(zhì)定理和等腰三角形的性質(zhì)以及已知條件證明∠ABC=90°即可;(2)連接OD,根據(jù)已知條件求得AD、DF的長(zhǎng),再證明△A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論