2023屆江蘇省南京市鹽城市高三第三次模擬考試數(shù)學試卷含解析_第1頁
2023屆江蘇省南京市鹽城市高三第三次模擬考試數(shù)學試卷含解析_第2頁
2023屆江蘇省南京市鹽城市高三第三次模擬考試數(shù)學試卷含解析_第3頁
2023屆江蘇省南京市鹽城市高三第三次模擬考試數(shù)學試卷含解析_第4頁
2023屆江蘇省南京市鹽城市高三第三次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年高考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)i為虛數(shù)單位,若復數(shù),則復數(shù)z等于()A. B. C. D.02.已知函數(shù)f(x)=,若關(guān)于x的方程f(x)=kx-恰有4個不相等的實數(shù)根,則實數(shù)k的取值范圍是()A. B.C. D.3.如圖所示,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某多面體的三視圖,則該幾何體的各個面中最大面的面積為()A. B. C. D.4.若函數(shù)在時取得極值,則()A. B. C. D.5.下列函數(shù)中,在區(qū)間上單調(diào)遞減的是()A. B. C. D.6.已知復數(shù)z,則復數(shù)z的虛部為()A. B. C.i D.i7.設(shè),是非零向量,若對于任意的,都有成立,則A. B. C. D.8.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是()A.36cm3 B.48cm3 C.60cm3 D.72cm39.已知雙曲線(,)的左、右頂點分別為,,虛軸的兩個端點分別為,,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.10.2019年10月1日上午,慶祝中華人民共和國成立70周年閱兵儀式在天安門廣場隆重舉行.這次閱兵不僅展示了我國的科技軍事力量,更是讓世界感受到了中國的日新月異.今年的閱兵方陣有一個很搶眼,他們就是院??蒲蟹疥?他們是由軍事科學院、國防大學、國防科技大學聯(lián)合組建.若已知甲、乙、丙三人來自上述三所學校,學歷分別有學士、碩士、博士學位.現(xiàn)知道:①甲不是軍事科學院的;②來自軍事科學院的不是博士;③乙不是軍事科學院的;④乙不是博士學位;⑤國防科技大學的是研究生.則丙是來自哪個院校的,學位是什么()A.國防大學,研究生 B.國防大學,博士C.軍事科學院,學士 D.國防科技大學,研究生11.集合的子集的個數(shù)是()A.2 B.3 C.4 D.812.設(shè)拋物線的焦點為F,拋物線C與圓交于M,N兩點,若,則的面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,分別是橢圓:()的左、右焦點,過左焦點的直線與橢圓交于、兩點,且,,則橢圓的離心率為__________.14.已知函數(shù),若,則___________.15.設(shè)變量,,滿足約束條件,則目標函數(shù)的最小值是______.16.設(shè)為定義在上的偶函數(shù),當時,(為常數(shù)),若,則實數(shù)的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)點,動圓經(jīng)過點且和直線相切.記動圓的圓心的軌跡為曲線.(1)求曲線的方程;(2)過點的直線與曲線交于、兩點,且直線與軸交于點,設(shè),,求證:為定值.18.(12分)貧困人口全面脫貧是全面建成小康社會的標志性指標.黨的十九屆四中全會提出“堅決打贏脫貧攻堅戰(zhàn),建立解決相對貧困的長效機制”對當前和下一個階段的扶貧工作進行了前瞻性的部署,即2020年要通過精準扶貧全面消除絕對貧困,實現(xiàn)全面建成小康社會的奮斗目標.為了響應(yīng)黨的號召,某市對口某貧困鄉(xiāng)鎮(zhèn)開展扶貧工作.對某種農(nóng)產(chǎn)品加工生產(chǎn)銷售進行指導,經(jīng)調(diào)查知,在一個銷售季度內(nèi),每售出一噸該產(chǎn)品獲利5萬元,未售出的商品,每噸虧損2萬元.經(jīng)統(tǒng)計,兩市場以往100個銷售周期該產(chǎn)品的市場需求量的頻數(shù)分布如下表:市場:需求量(噸)90100110頻數(shù)205030市場:需求量(噸)90100110頻數(shù)106030把市場需求量的頻率視為需求量的概率,設(shè)該廠在下個銷售周期內(nèi)生產(chǎn)噸該產(chǎn)品,在、兩市場同時銷售,以(單位:噸)表示下一個銷售周期兩市場的需求量,(單位:萬元)表示下一個銷售周期兩市場的銷售總利潤.(1)求的概率;(2)以銷售利潤的期望為決策依據(jù),確定下個銷售周期內(nèi)生產(chǎn)量噸還是噸?并說明理由.19.(12分)已知橢圓的焦距為2,且過點.(1)求橢圓的方程;(2)設(shè)為的左焦點,點為直線上任意一點,過點作的垂線交于兩點,(?。┳C明:平分線段(其中為坐標原點);(ⅱ)當取最小值時,求點的坐標.20.(12分)在四棱錐中,底面為直角梯形,,面.(1)在線段上是否存在點,使面,說明理由;(2)求二面角的余弦值.21.(12分)已知函數(shù)(1)求函數(shù)在處的切線方程(2)設(shè)函數(shù),對于任意,恒成立,求的取值范圍.22.(10分)在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為.(1)求直線l的普通方程和圓C的直角坐標方程;(2)直線l與圓C交于A,B兩點,點P(2,1),求|PA|?|PB|的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據(jù)復數(shù)除法的運算法則,即可求解.【詳解】.故選:B.【點睛】本題考查復數(shù)的代數(shù)運算,屬于基礎(chǔ)題.2.D【解析】

由已知可將問題轉(zhuǎn)化為:y=f(x)的圖象和直線y=kx-有4個交點,作出圖象,由圖可得:點(1,0)必須在直線y=kx-的下方,即可求得:k>;再求得直線y=kx-和y=lnx相切時,k=;結(jié)合圖象即可得解.【詳解】若關(guān)于x的方程f(x)=kx-恰有4個不相等的實數(shù)根,則y=f(x)的圖象和直線y=kx-有4個交點.作出函數(shù)y=f(x)的圖象,如圖,故點(1,0)在直線y=kx-的下方.∴k×1->0,解得k>.當直線y=kx-和y=lnx相切時,設(shè)切點橫坐標為m,則k==,∴m=.此時,k==,f(x)的圖象和直線y=kx-有3個交點,不滿足條件,故所求k的取值范圍是,故選D..【點睛】本題主要考查了函數(shù)與方程思想及轉(zhuǎn)化能力,還考查了導數(shù)的幾何意義及計算能力、觀察能力,屬于難題.3.B【解析】

根據(jù)三視圖可以得到原幾何體為三棱錐,且是有三條棱互相垂直的三棱錐,根據(jù)幾何體的各面面積可得最大面的面積.【詳解】解:分析題意可知,如下圖所示,該幾何體為一個正方體中的三棱錐,最大面的表面邊長為的等邊三角形,故其面積為,故選B.【點睛】本題考查了幾何體的三視圖問題,解題的關(guān)鍵是要能由三視圖解析出原幾何體,從而解決問題.4.D【解析】

對函數(shù)求導,根據(jù)函數(shù)在時取得極值,得到,即可求出結(jié)果.【詳解】因為,所以,又函數(shù)在時取得極值,所以,解得.故選D【點睛】本題主要考查導數(shù)的應(yīng)用,根據(jù)函數(shù)的極值求參數(shù)的問題,屬于??碱}型.5.C【解析】

由每個函數(shù)的單調(diào)區(qū)間,即可得到本題答案.【詳解】因為函數(shù)和在遞增,而在遞減.故選:C【點睛】本題主要考查常見簡單函數(shù)的單調(diào)區(qū)間,屬基礎(chǔ)題.6.B【解析】

利用復數(shù)的運算法則、虛部的定義即可得出【詳解】,則復數(shù)z的虛部為.故選:B.【點睛】本題考查了復數(shù)的運算法則、虛部的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.7.D【解析】

畫出,,根據(jù)向量的加減法,分別畫出的幾種情況,由數(shù)形結(jié)合可得結(jié)果.【詳解】由題意,得向量是所有向量中模長最小的向量,如圖,當,即時,最小,滿足,對于任意的,所以本題答案為D.【點睛】本題主要考查了空間向量的加減法,以及點到直線的距離最短問題,解題的關(guān)鍵在于用有向線段正確表示向量,屬于基礎(chǔ)題.8.B【解析】試題分析:該幾何體上面是長方體,下面是四棱柱;長方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點:三視圖和幾何體的體積.9.D【解析】

根據(jù)題意畫出幾何關(guān)系,由四邊形的內(nèi)切圓面積求得半徑,結(jié)合四邊形面積關(guān)系求得與等量關(guān)系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫出幾何關(guān)系如下圖所示:設(shè)四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當且僅當時等號成立.故焦距的最小值為.故選:D【點睛】本題考查了雙曲線的定義及其性質(zhì)的簡單應(yīng)用,圓錐曲線與基本不等式綜合應(yīng)用,屬于中檔題.10.C【解析】

根據(jù)①③可判斷丙的院校;由②和⑤可判斷丙的學位.【詳解】由題意①甲不是軍事科學院的,③乙不是軍事科學院的;則丙來自軍事科學院;由②來自軍事科學院的不是博士,則丙不是博士;由⑤國防科技大學的是研究生,可知丙不是研究生,故丙為學士.綜上可知,丙來自軍事科學院,學位是學士.故選:C.【點睛】本題考查了合情推理的簡單應(yīng)用,由條件的相互牽制判斷符合要求的情況,屬于基礎(chǔ)題.11.D【解析】

先確定集合中元素的個數(shù),再得子集個數(shù).【詳解】由題意,有三個元素,其子集有8個.故選:D.【點睛】本題考查子集的個數(shù)問題,含有個元素的集合其子集有個,其中真子集有個.12.B【解析】

由圓過原點,知中有一點與原點重合,作出圖形,由,,得,從而直線傾斜角為,寫出點坐標,代入拋物線方程求出參數(shù),可得點坐標,從而得三角形面積.【詳解】由題意圓過原點,所以原點是圓與拋物線的一個交點,不妨設(shè)為,如圖,由于,,∴,∴,,∴點坐標為,代入拋物線方程得,,∴,.故選:B.【點睛】本題考查拋物線與圓相交問題,解題關(guān)鍵是發(fā)現(xiàn)原點是其中一個交點,從而是等腰直角三角形,于是可得點坐標,問題可解,如果僅從方程組角度研究兩曲線交點,恐怕難度會大大增加,甚至沒法求解.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

設(shè),則,,由知,,,作,垂足為C,則C為的中點,在和中分別求出,進而求出的關(guān)系式,即可求出橢圓的離心率.【詳解】如圖,設(shè),則,,由橢圓定義知,,因為,所以,,作,垂足為C,則C為的中點,在中,因為,所以,在中,由余弦定理可得,,即,解得,所以橢圓的離心率為.故答案為:【點睛】本題考查橢圓的離心率和直線與橢圓的位置關(guān)系;利用橢圓的定義,結(jié)合焦點三角形和余弦定理是求解本題的關(guān)鍵;屬于中檔題、??碱}型.14.【解析】

根據(jù)題意,利用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性,利用函數(shù)奇偶性的性質(zhì)求解即可.【詳解】因為函數(shù),其定義域為,所以其定義域關(guān)于原點對稱,又,所以函數(shù)為奇函數(shù),因為,所以.故答案為:【點睛】本題考查函數(shù)奇偶性的判斷及其性質(zhì);考查運算求解能力;熟練掌握函數(shù)奇偶性的判斷方法是求解本題的關(guān)鍵;屬于中檔題、??碱}型.15.7【解析】作出不等式組表示的平面區(qū)域,得到如圖的△ABC及其內(nèi)部,其中A(2,1),B(1,2),C(4,5)設(shè)z=F(x,y)=2x+3y,將直線l:z=2x+3y進行平移,當l經(jīng)過點A時,目標函數(shù)z達到最小值∴z最小值=F(2,1)=716.1【解析】

根據(jù)為定義在上的偶函數(shù),得,再根據(jù)當時,(為常數(shù))求解.【詳解】因為為定義在上的偶函數(shù),所以,又因為當時,,所以,所以實數(shù)的值為1.故答案為:1【點睛】本題主要考查函數(shù)奇偶性的應(yīng)用,還考查了運算求解的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)見解析.【解析】

(1)已知點軌跡是以為焦點,直線為準線的拋物線,由此可得曲線的方程;(2)設(shè)直線方程為,,則,設(shè),由直線方程與拋物線方程聯(lián)立消元應(yīng)用韋達定理得,,由,,用橫坐標表示出,然后計算,并代入,可得結(jié)論.【詳解】(1)設(shè)動圓圓心,由拋物線定義知:點軌跡是以為焦點,直線為準線的拋物線,設(shè)其方程為,則,解得.∴曲線的方程為;(2)證明:設(shè)直線方程為,,則,設(shè),由得,①,則,,②,由,,得,,整理得,,∴,代入②得:.【點睛】本題考查求曲線方程,考查拋物線的定義,考查直線與拋物線相交問題中的定值問題.解題方法是設(shè)而不求的思想方法,即設(shè)交點坐標,設(shè)直線方程,直線方程代入拋物線(或圓錐曲線)方程得一元二次方程,應(yīng)用韋達定理得,,代入題中其他條件所求式子中化簡變形.18.(1);(2)噸,理由見解析【解析】

(1)設(shè)“市場需求量為90,100,110噸”分別記為事件,,,“市場需求量為90,100,110噸”分別記為事件,,,由題可得,,,,,,代入,計算可得答案;(2)可取180,190,200,210,220,求出噸和噸時的期望,比較大小即可.【詳解】(1)設(shè)“市場需求量為90,100,110噸”分別記為事件,,,“市場需求量為90,100,110噸”分別記為事件,,,則,,,,,,;(2)可取180,190,200,210,220,當時,當時,.,時,平均利潤大,所以下個銷售周期內(nèi)生產(chǎn)量噸.【點睛】本題考查離散型隨機變量的期望,是中檔題.19.(1)(2)(?。┮娊馕觯áⅲc的坐標為.【解析】

(1)由題意得,再由的關(guān)系求出,即可得橢圓的標準方程;(2)(i)設(shè),的中點為,,設(shè)直線的方程為,代入橢圓方程中,運用根與系數(shù)的關(guān)系和中點坐標公式,結(jié)合三點共線的方法:斜率相等,即可得證;(ii)利用兩點間的距離公式及弦長公式將表示出來,由換元法的對勾函數(shù)的單調(diào)性,可得取最小值時的條件獲得等量關(guān)系,從而確定點的坐標.【詳解】解:(1)由題意得,,所以,所以橢圓方程為(2)設(shè),的中點為,(?。┳C明:由,可設(shè)直線的方程為,代入橢圓方程,得,所以,所以,則直線的斜率為,因為,所以,所以三點共線,所以平分線段;(ii)由兩點間的距離公式得由弦長公式得所以,令,則,由在上遞增,可得,即時,取得最小值4,所以當取最小值時,點的坐標為【點睛】此題考那可是橢圓方程和性質(zhì),主要考查橢圓方程的運用,運用根與系數(shù)的關(guān)系和中點坐標公式,同時考查弦長公式,屬于較難題.20.(1)存在;詳見解析(2)【解析】

(1)利用面面平行的性質(zhì)定理可得,為上靠近點的三等分點,中點,證明平面平面即得;(2)過作交于,可得兩兩垂直,以分別為軸建立空間直角坐標系,求出長,寫出各點坐標,用向量法求二面角.【詳解】解:(1)當為上靠近點的三等分點時,滿足面.證明如下,取中點,連結(jié).即易得所以面面,即面.(2)過作交于面,兩兩垂直,以分別為軸建立空間直角坐標系,如圖,設(shè)面法向量,則,即取同理可得面的法向量綜上可知銳二面角的余弦值為.【點睛】本題考查立體幾何中的存探索性命題,考查用空間向量法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論