2022-2023學(xué)年安徽省滁州市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁(yè)
2022-2023學(xué)年安徽省滁州市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁(yè)
2022-2023學(xué)年安徽省滁州市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁(yè)
2022-2023學(xué)年安徽省滁州市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁(yè)
2022-2023學(xué)年安徽省滁州市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年安徽省滁州市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.微分方程y'+y=0的通解為y=A.e-x+C

B.-e-x+C

C.Ce-x

D.Cex

3.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分條件也非必要條件

4.

5.

6.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2

7.設(shè)二元函數(shù)z=xy,則點(diǎn)P0(0,0)A.為z的駐點(diǎn),但不為極值點(diǎn)B.為z的駐點(diǎn),且為極大值點(diǎn)C.為z的駐點(diǎn),且為極小值點(diǎn)D.不為z的駐點(diǎn),也不為極值點(diǎn)

8.

9.設(shè)函數(shù)f(x)在[a,b]上連續(xù),在(a,b)可導(dǎo),f'(x)>0,f(a)f(b)<0,則f(x)在(a,b)內(nèi)零點(diǎn)的個(gè)數(shù)為

A.3B.2C.1D.0

10.A.3B.2C.1D.0

11.設(shè)y=x+sinx,則y=()A.A.sinx

B.x

C.x+cosx

D.1+cosx

12.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿足f(-1)=0,當(dāng)x<-1時(shí),f(x)<0;當(dāng)x>-1時(shí),f(x)>0.則下列結(jié)論肯定正確的是().

A.x=-1是駐點(diǎn),但不是極值點(diǎn)B.x=-1不是駐點(diǎn)C.x=-1為極小值點(diǎn)D.x=-1為極大值點(diǎn)

13.A.A.>0B.<0C.=0D.不存在

14.

15.

16.設(shè)函數(shù)f(x)=(1+x)ex,則函數(shù)f(x)()。

A.有極小值B.有極大值C.既有極小值又有極大值D.無極值

17.=()。A.

B.

C.

D.

18.冪級(jí)數(shù)的收斂半徑為()A.1B.2C.3D.4

19.微分方程y''-2y'=x的特解應(yīng)設(shè)為A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+C

20.

二、填空題(20題)21.

22.

23.

24.設(shè)x2為f(x)的一個(gè)原函數(shù),則f(x)=_____

25.

26.

27.微分方程y=x的通解為________。

28.______。

29.

30.

31.設(shè)f(x)=sinx/2,則f'(0)=_________。

32.

33.

34.設(shè)y=f(x)在點(diǎn)x0處可導(dǎo),且在點(diǎn)x0處取得極小值,則曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程為________。

35.

36.

37.設(shè)sinx為f(x)的原函數(shù),則f(x)=______.

38.

39.冪級(jí)數(shù)的收斂半徑為______.

40.

三、計(jì)算題(20題)41.

42.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

43.求微分方程y"-4y'+4y=e-2x的通解.

44.

45.證明:

46.

47.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

48.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

49.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

50.

51.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

52.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則

53.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

54.將f(x)=e-2X展開為x的冪級(jí)數(shù).

55.

56.

57.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

58.求微分方程的通解.

59.

60.求曲線在點(diǎn)(1,3)處的切線方程.

四、解答題(10題)61.

62.

63.

64.

65.求微分方程y"-3y'+2y=0的通解。

66.

67.

68.求直線y=2x+1與直線x=0,x=1和y=0所圍平面圖形的面積,并求該圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積。

69.

70.

五、高等數(shù)學(xué)(0題)71.若函數(shù)f(x)的導(dǎo)函數(shù)為sinx,則f(x)的一個(gè)原函數(shù)是__________。

六、解答題(0題)72.設(shè)平面薄片的方程可以表示為x2+y2≤R2,x≥0,薄片上點(diǎn)(x,y)處的密度,求該薄片的質(zhì)量M.

參考答案

1.C

2.C

3.B

4.A

5.A解析:

6.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。

7.A

8.D解析:

9.C本題考查了零點(diǎn)存在定理的知識(shí)點(diǎn)。由零點(diǎn)存在定理可知,f(x)在(a,b)上必有零點(diǎn),且函數(shù)是單調(diào)函數(shù),故其在(a,b)上只有一個(gè)零點(diǎn)。

10.A

11.D

12.C本題考查的知識(shí)點(diǎn)為極值的第-充分條件.

由f(-1)=0,可知x=-1為f(x)的駐點(diǎn),當(dāng)x<-1時(shí)f(x)<0;當(dāng)x>-1時(shí),

f(x)>1,由極值的第-充分條件可知x=-1為f(x)的極小值點(diǎn),故應(yīng)選C.

13.C被積函數(shù)sin5x為奇函數(shù),積分區(qū)間[-1,1]為對(duì)稱區(qū)間。由定積分的對(duì)稱性質(zhì)知選C。

14.C

15.D

16.A因f(x)=(1+x)ex且處處可導(dǎo),于是,f'(x)=ex+(1+x)·ex=(x+2)ex,令f'(x)=0得駐點(diǎn)x=-2;又x<-2時(shí),f'(x)<0;x>-2時(shí),f'(x)>0;從而f(x)在i=-2處取得極小值,且f(x)只有一個(gè)極值.

17.D

18.A由于可知收斂半徑R==1.故選A。

19.C因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.

20.A

21.

22.6.

本題考查的知識(shí)點(diǎn)為無窮小量階的比較.

23.

24.由原函數(shù)的概念可知

25.(2x-y)dx+(2y-x)dy(2x-y)dx+(2y-x)dy解析:

26.x=-2x=-2解析:

27.本題考查可分離變量的微分方程.分離變量得dy=xdx,兩端分別積分,∫dy=∫xdx,

28.本題考查的知識(shí)點(diǎn)為極限運(yùn)算。

所求極限的表達(dá)式為分式,其分母的極限不為零。

因此

29.2cos(x2+y2)(xdx+ydy)2cos(x2+y2)(xdx+ydy)解析:

30.00解析:

31.1/2

32.

解析:

33.1

34.y=f(x0)y=f(x)在點(diǎn)x0處可導(dǎo),且y=f(x)有極小值f(x0),這意味著x0為f(x)的極小值點(diǎn)。由極值的必要條件可知,必有f"(x0)=0,因此曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程為y-f(x0)=f(x0)(x-x0)=0,即y=f(x0)為所求切線方程。

35.1本題考查了一階導(dǎo)數(shù)的知識(shí)點(diǎn)。

36.

37.cosxcosx解析:本題考查的知識(shí)點(diǎn)為原函數(shù)的概念.

由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)'=cosx.

38.7

39.

解析:本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

注意此處冪級(jí)數(shù)為缺項(xiàng)情形.

40.1/6

41.

42.

43.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

44.由一階線性微分方程通解公式有

45.

46.

47.

列表:

說明

48.由二重積分物理意義知

49.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

50.

51.

52.由等價(jià)無窮小量的定義可知

53.

54.

55.

56.

57.函數(shù)的定義域?yàn)?/p>

注意

58.

59.

60.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

61.

62.

63.

64.由于

65.y"-3y'+2y=0特征方程為r2-3r+2=0(r-1)(r-2)=0。特征根為r1=1r2=2。方程的通解為y=C1ex+C2e2x。y"-3y'+2y=0,特征方程為r2-3r+2=0,(r-1)(r-2)=0。特征根為r1=1,r2=2。方程的通解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論