版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年廣東省潮州市成考專升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.設(shè)函數(shù)y=2x+sinx,則y'=
A.1+cosxB.1-cosxC.2+cosxD.2-cosx
2.
3.
A.-e
B.-e-1
C.e-1
D.e
4.
A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)
5.
6.
7.A.A.條件收斂B.絕對收斂C.收斂性與k有關(guān)D.發(fā)散
8.
9.設(shè)f(x)=x3+x,則等于()。A.0
B.8
C.
D.
10.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。
A.充要條件B.充分條件C.必要條件D.無關(guān)條件
11.
12.
13.
14.設(shè)f(x)為連續(xù)函數(shù),則()'等于().A.A.f(t)B.f(t)-f(a)C.f(x)D.f(x)-f(a)
15.設(shè)a={-1,1,2),b={3,0,4},則向量a在向量b上的投影為()A.A.
B.1
C.
D.-1
16.A.A.1B.2C.3D.4
17.已知斜齒輪上A點(diǎn)受到另一齒輪對它作用的捏合力Fn,F(xiàn)n沿齒廓在接觸處的公法線方向,且垂直于過A點(diǎn)的齒面的切面,如圖所示,α為壓力角,β為斜齒輪的螺旋角。下列關(guān)于一些力的計(jì)算有誤的是()。
A.圓周力FT=Fncosαcosβ
B.徑向力Fa=Fncosαcosβ
C.軸向力Fr=Fncosα
D.軸向力Fr=Fnsinα
18.
19.
20.A.A.>0B.<0C.=0D.不存在
21.設(shè)函數(shù)/(x)=cosx,則
A.1
B.0
C.
D.-1
22.
23.
24.A.6YB.6XYC.3XD.3X^2
25.A.3x2+C
B.
C.x3+C
D.
26.
27.微分方程y'+y=0的通解為y=A.e-x+C
B.-e-x+C
C.Ce-x
D.Cex
28.
A.必定收斂B.必定發(fā)散C.收斂性與α有關(guān)D.上述三個(gè)結(jié)論都不正確
29.
30.A.收斂B.發(fā)散C.收斂且和為零D.可能收斂也可能發(fā)散31.A.A.
B.
C.
D.
32.鑒別的方法主要有查證法、比較法、佐證法、邏輯法。其中()是指通過尋找物證、人證來驗(yàn)證信息的可靠程度的方法。
A.查證法B.比較法C.佐證法D.邏輯法
33.
A.僅有水平漸近線
B.既有水平漸近線,又有鉛直漸近線
C.僅有鉛直漸近線
D.既無水平漸近線,又無鉛直漸近線
34.
35.設(shè)函數(shù)f(x)在[a,b]上連續(xù),且f(a)·f(b)<0,則必定存在一點(diǎn)ξ∈(a,b)使得()A.f(ξ)>0B.f(ξ)<0C.f(ξ)=0D.f(ξ)=036.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)
37.()有助于同級(jí)部門或同級(jí)領(lǐng)導(dǎo)之間的溝通了解。
A.上行溝通B.下行溝通C.平行溝通D.分權(quán)
38.
39.下列反常積分收斂的是()。A.∫1+∞xdx
B.∫1+∞x2dx
C.
D.
40.f(x)在x=0的某鄰域內(nèi)一階導(dǎo)數(shù)連續(xù)且則()。A.x=0不是f(x)的極值點(diǎn)B.x=0是f(x)的極大值點(diǎn)C.x=0是f(x)的極小值點(diǎn)D.x=0是f(x)的拐點(diǎn)
41.
42.
43.
44.
45.A.A.π/4
B.π/2
C.π
D.2π
46.A.A.sinx+sin2B.-sinx+sin2C.sinxD.-sinx
47.
48.
49.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)
50.方程x2+y2-2z=0表示的二次曲面是.
A.柱面B.球面C.旋轉(zhuǎn)拋物面D.橢球面二、填空題(20題)51.
52.
53.54.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則
55.
56.
57.
58.
59.
60.過點(diǎn)M0(1,2,-1)且與平面x-y+3z+1=0垂直的直線方程為_________。
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.三、計(jì)算題(20題)71.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.72.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則73.求曲線在點(diǎn)(1,3)處的切線方程.
74.
75.研究級(jí)數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.76.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.77.78.79.將f(x)=e-2X展開為x的冪級(jí)數(shù).
80.求微分方程y"-4y'+4y=e-2x的通解.
81.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
82.
83.
84.證明:85.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).86.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.87.
88.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
89.
90.求微分方程的通解.四、解答題(10題)91.
92.
93.設(shè)z=f(xy,x2),其中f(x,y)有連續(xù)偏導(dǎo)數(shù),求
94.求∫xsin(x2+1)dx。
95.設(shè)
96.計(jì)算,其中D為曲線y=x,y=1,x=0圍成的平面區(qū)域.
97.98.設(shè)函數(shù)f(x)=x3-3x2-9x,求f(x)的極大值。
99.
100.
五、高等數(shù)學(xué)(0題)101.
六、解答題(0題)102.
參考答案
1.D本題考查了一階導(dǎo)數(shù)的知識(shí)點(diǎn)。因?yàn)閥=2x+sinx,則y'=2+cosx.
2.C
3.C所給問題為反常積分問題,由定義可知
因此選C.
4.C
本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo).
5.A
6.B
7.A本題考杏的知識(shí)點(diǎn)為級(jí)數(shù)的絕對收斂與條件收斂.
8.B解析:
9.A本題考查的知識(shí)點(diǎn)為定積分的對稱性質(zhì)。由于所給定積分的積分區(qū)間為對稱區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對稱性質(zhì)可知
可知應(yīng)選A。
10.B∵可導(dǎo)一定連續(xù),連續(xù)一定可積;反之不一定。∴可導(dǎo)是可積的充分條件
11.C
12.A
13.D
14.C本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo)性質(zhì).
這是一個(gè)基本性質(zhì):若f(x)為連續(xù)函數(shù),則必定可導(dǎo),且
本題常見的錯(cuò)誤是選D,這是由于考生將積分的性質(zhì)與牛頓-萊布尼茨公式混在了一起而引起的錯(cuò)誤.
15.B
16.A
17.C
18.C解析:
19.C
20.C被積函數(shù)sin5x為奇函數(shù),積分區(qū)間[-1,1]為對稱區(qū)間。由定積分的對稱性質(zhì)知選C。
21.D
22.A
23.A
24.D
25.B
26.D
27.C
28.D本題考查的知識(shí)點(diǎn)為正項(xiàng)級(jí)數(shù)的比較判別法.
29.C
30.D
31.D
32.C解析:佐證法是指通過尋找物證、人證來驗(yàn)證信息的可靠程度的方法。
33.A
34.C
35.D
36.B由于f'(x)>0,可知.f(x)在(0,1)內(nèi)單調(diào)增加。因此選B。
37.C解析:平行溝通有助于同級(jí)部門或同級(jí)領(lǐng)導(dǎo)之間的溝通了解。
38.D
39.DA,∫1+∞xdx==∞發(fā)散;
40.A∵分母極限為0,分子極限也為0;(否則極限不存在)用羅必達(dá)法則同理即f"(0)一1≠0;x=0不是駐點(diǎn)∵可導(dǎo)函數(shù)的極值點(diǎn)必是駐點(diǎn)∴選A。
41.A解析:
42.A解析:
43.C
44.C解析:
45.B
46.D
47.D解析:
48.C
49.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。
50.C本題考查了二次曲面的知識(shí)點(diǎn)。x2+y2-2z=0可化為x2/2+y2/2=z,故表示的是旋轉(zhuǎn)拋物面。
51.
52.
53.54.本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算。
如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長、寬都為1的正形,可知其面積為1。因此
55.-exsiny
56.1/21/2解析:
57.
58.
59.ln|x-1|+c
60.
61.
本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.
注意此處冪級(jí)數(shù)為缺項(xiàng)情形.
62.y=lnx+Cy=lnx+C解析:
63.11解析:
64.[-11]
65.
66.(03)(0,3)解析:
67.2/32/3解析:
68.
69.
70.71.由二重積分物理意義知
72.由等價(jià)無窮小量的定義可知73.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
74.
75.
76.
77.
78.
79.
80.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
81.
82.
83.
84.
85.
列表:
說明
86.函數(shù)的定義域?yàn)?/p>
注意
87.
則
88.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%89.由一階線性微分方程通解公式有
90.
91.
92.
93.本題考查的知識(shí)點(diǎn)為求抽象函數(shù)的偏導(dǎo)數(shù).
已知z:f(xy,x2),其中f(x,y)有連續(xù)偏導(dǎo)數(shù),求.通常有兩種求解方法.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《焊接工程綜合實(shí)驗(yàn)》實(shí)驗(yàn)教學(xué)大綱
- 玉溪師范學(xué)院《體育科學(xué)研究方法》2022-2023學(xué)年第一學(xué)期期末試卷
- 數(shù)學(xué)15的認(rèn)識(shí)教學(xué)課件教學(xué)課件教學(xué)
- 拆除工程施工方案
- 2024年電子控制自動(dòng)變速箱項(xiàng)目評(píng)估分析報(bào)告
- 2024年網(wǎng)絡(luò)接口適配器項(xiàng)目成效分析報(bào)告
- 2024年堿錳電池項(xiàng)目成效分析報(bào)告
- 采購產(chǎn)品特定模具費(fèi)用先期墊付協(xié)議書
- 不帶機(jī)械操作手的機(jī)械租賃合同
- 必勝客離職合同
- 校企共建項(xiàng)目合同違約條款
- 中小學(xué)教師如何做課題研究設(shè)計(jì)課件
- 《1.6.1 余弦定理》說課稿
- 急診醫(yī)學(xué)測試試題及答案
- 2024年廣州鐵路(集團(tuán))公司招聘468人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 第四單元兩、三位數(shù)除以一位數(shù)(單元測試)-2024-2025學(xué)年三年級(jí)上冊數(shù)學(xué)蘇教版
- 2024年保安員證考試題庫及答案(共240題)
- 人教版一年級(jí)上冊數(shù)學(xué)期末試題及答案
- 浙江省9+1高中聯(lián)盟2023-2024學(xué)年高一上學(xué)期11月期中英語試題 含解析
- 2025屆高三化學(xué)一輪復(fù)習(xí) 第13講 鐵鹽、亞鐵鹽及其轉(zhuǎn)化 課件
- 【電商企業(yè)跨國并購的績效探析案例:以阿里巴巴并購Lazada為例(論文)14000字】
評(píng)論
0/150
提交評(píng)論