版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022年遼寧省鐵嶺市普通高校對口單招高等數(shù)學一自考測試卷(含答案)學校:________班級:________姓名:________考號:________
一、單選題(20題)1.設f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為()。A.
B.
C..
D.不能確定
2.
3.
4.
5.設f(x)=x3+x,則等于()。A.0
B.8
C.
D.
6.
7.
8.
9.設f(x)=e3x,則在x=0處的二階導數(shù)f"(0)=A.A.3B.6C.9D.9e
10.
11.設z=x2y,則等于()。A.2yx2y-1
B.x2ylnx
C.2x2y-1lnx
D.2x2ylnx
12.A.1-cosxB.1+cosxC.2-cosxD.2+cosx
13.設f'(x0)=0,f"(x0)<0,則下列結(jié)論必定正確的是().A.A.x0為f(x)的極大值點
B.x0為f(x)的極小值點
C.x0不為f(x)的極值點
D.x0可能不為f(x)的極值點
14.交換二次積分次序等于().A.A.
B.
C.
D.
15.A.A.-(1/2)B.1/2C.-1D.2
16.設有直線當直線l1與l2平行時,λ等于().
A.1B.0C.-1/2D.-1
17.
18.在空間直角坐標系中,方程2+3y2+3x2=1表示的曲面是().
A.球面
B.柱面
C.錐面
D.橢球面
19.
20.
二、填空題(20題)21.過M0(1,-1,2)且垂直于平面2x-y+3z-1=0的直線方程為.
22.設y=ex/x,則dy=________。
23.
24.
25.
26.
27.
28.
29.
30.
31.函數(shù)f(x)=x3-12x的極小值點x=_______.
32.
33.
34.
35.
36.∫x(x2-5)4dx=________。
37.
38.
39.過M0(1,-1,2)且垂直于平面2x-y+3z-1=0的直線方程為______.
40.
三、計算題(20題)41.
42.將f(x)=e-2X展開為x的冪級數(shù).
43.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.
44.
45.
46.設平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
47.設拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
48.當x一0時f(x)與sin2x是等價無窮小量,則
49.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
50.證明:
51.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
52.求微分方程y"-4y'+4y=e-2x的通解.
53.求曲線在點(1,3)處的切線方程.
54.
55.求微分方程的通解.
56.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.
57.
58.
59.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
60.
四、解答題(10題)61.
62.
63.
64.
(1)切點A的坐標(a,a2).
(2)過切點A的切線方程。
65.
66.求曲線y=sinx、y=cosx、直線x=0在第一象限所圍圖形的面積A及該圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積Vx。
67.求垂直于直線2x-6y+1=0且與曲線y=x3+3x2-5相切的直線方程.
68.求∫sin(x+2)dx。
69.
70.設z=x2ey,求dz。
五、高等數(shù)學(0題)71.設函數(shù)
=___________。
六、解答題(0題)72.設y=y(x)由確定,求dy.
參考答案
1.B本題考查的知識點為定積分的幾何意義。由定積分的幾何意義可知應選B。常見的錯誤是選C。如果畫個草圖,則可以避免這類錯誤。
2.A
3.D
4.B
5.A本題考查的知識點為定積分的對稱性質(zhì)。由于所給定積分的積分區(qū)間為對稱區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對稱性質(zhì)可知
可知應選A。
6.C
7.D解析:
8.B
9.Cf(x)=e3x,f'(x)=3e3x,f"(x)=9e3x,f"(0)=9,因此選C。
10.A
11.A本題考查的知識點為偏導數(shù)的計算。對于z=x2y,求的時候,要將z認定為x的冪函數(shù),從而可知應選A。
12.D
13.A本題考查的知識點為函數(shù)極值的第二充分條件.
由極值的第二充分條件可知應選A.
14.B本題考查的知識點為交換二次積分次序.
由所給二次積分可知積分區(qū)域D可以表示為
1≤y≤2,y≤x≤2,
交換積分次序后,D可以表示為
1≤x≤2,1≤y≤x,
故應選B.
15.A
16.C解析:
17.B解析:
18.D對照標準二次曲面的方程可知x2+3y2+3x2=1表示橢球面,故選D.
19.D
20.D解析:
21.
本題考查的知識點為直線方程的求解.
由于所求直線與平面垂直,因此直線的方向向量s可取為已知平面的法向量n=(2,-1,3).
由直線的點向式方程可知所求直線方程為
22.
23.
24.
25.
本題考查了一元函數(shù)的導數(shù)的知識點
26.
解析:
27.
28.
29.
30.x2x+3x+C本題考查了不定積分的知識點。
31.22本題考查了函數(shù)的極值的知識點。f'(x)=3x2-12=3(x-2)(x+2),當x=2或x=-2時,f'(x)=0,當x<-2時,f'(x)>0;當-2<x<2時,f'(x)<0;當x>2時,f’(x)>0,因此x=2是極小值點,
32.
33.0
34.(-21)(-2,1)
35.(-∞.2)
36.
37.00解析:
38.
39.
本題考查的知識點為直線方程的求解.
由于所求直線與平面垂直,因此直線的方向向量s可取為已知平面的法向量n=(2,-1,3).由直線的點向式方程可知所求直線方程為
40.0
41.
42.
43.
列表:
說明
44.
45.
46.由二重積分物理意義知
47.
48.由等價無窮小量的定義可知
49.函數(shù)的定義域為
注意
50.
51.
52.解:原方程對應的齊次方程為y"-4y'+4y=0,
53.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
54.
則
55.
56.
57.
58.由一階線性微分方程通解公式有
59.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%
60.
61.
62.
63.
64.本題考查的知識點為定積分的幾何意義和曲線的切線方程.
α=1.
因此A點的坐標為(1,1).
過A點的切線方程為y一1=2(x一1)或y=2x一1.
本題在利用定積分表示平面圖形時,以y為積
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度曹瑞與張麗離婚協(xié)議中公司股權(quán)分割及轉(zhuǎn)讓協(xié)議3篇
- 2024美食盛宴商業(yè)合作伙伴合同版B版
- 2025年度漁業(yè)資源承包與可持續(xù)發(fā)展合同4篇
- 2025年度體育場館食堂承包合同范本3篇
- 2025年度生物科技研發(fā)公司部分股權(quán)出售合同3篇
- 2025年度智慧社區(qū)建設承包合同股東內(nèi)部經(jīng)營協(xié)議4篇
- 2025年度潯購F000353632生鮮產(chǎn)品展示冰柜采購合同3篇
- 2025年度水產(chǎn)養(yǎng)殖蟲害綜合防控技術(shù)合同4篇
- 職業(yè)教育培訓需求分析課件
- 2025年幼兒園食堂承包及幼兒營養(yǎng)餐服務合同4篇
- 火災安全教育觀后感
- 農(nóng)村自建房屋安全協(xié)議書
- 快速康復在骨科護理中的應用
- 國民經(jīng)濟行業(yè)分類和代碼表(電子版)
- ICU患者外出檢查的護理
- 公司收購設備合同范例
- 廣東省潮州市2023-2024學年高二上學期語文期末考試試卷(含答案)
- 2024年光伏發(fā)電項目EPC總包合同
- 子女放棄房產(chǎn)繼承協(xié)議書
- 氧化還原反應配平專項訓練
- 試卷(完整版)python考試復習題庫復習知識點試卷試題
評論
0/150
提交評論