




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數()是純虛數,則復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知,,則()A. B. C.3 D.43.已知等邊△ABC內接于圓:x2+y2=1,且P是圓τ上一點,則的最大值是()A. B.1 C. D.24.已知的展開式中第項與第項的二項式系數相等,則奇數項的二項式系數和為().A. B. C. D.5.已知三棱錐的外接球半徑為2,且球心為線段的中點,則三棱錐的體積的最大值為()A. B. C. D.6.已知拋物線y2=4x的焦點為F,拋物線上任意一點P,且PQ⊥y軸交y軸于點Q,則的最小值為()A. B. C.l D.17.設為虛數單位,復數,則實數的值是()A.1 B.-1 C.0 D.28.某校為提高新入聘教師的教學水平,實行“老帶新”的師徒結對指導形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導,現選出3位老教師負責指導5位新入聘教師,則不同的師徒結對方式共有()種.A.360 B.240 C.150 D.1209.設復數滿足為虛數單位),則()A. B. C. D.10.已知角的頂點與原點重合,始邊與軸的正半軸重合,終邊經過點,則()A. B. C. D.11.若復數,,其中是虛數單位,則的最大值為()A. B. C. D.12.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關系為()A.b>c>a B.c>b>a C.a>b>c D.b>a>c二、填空題:本題共4小題,每小題5分,共20分。13.已知函數為偶函數,則_____.14.若向量滿足,則實數的取值范圍是____________.15.已知的終邊過點,若,則__________.16.函數的值域為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線:(為參數),曲線(為參數).(1)設與相交于,兩點,求;(2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設點是曲線上的一個動點,求它到直線距離的最小值.18.(12分)已知在平面直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求曲線與直線的直角坐標方程;(2)若曲線與直線交于兩點,求的值.19.(12分)已知a>0,b>0,a+b=2.(Ⅰ)求的最小值;(Ⅱ)證明:20.(12分)已知函數的圖象向左平移后與函數圖象重合.(1)求和的值;(2)若函數,求的單調遞增區(qū)間及圖象的對稱軸方程.21.(12分)已知等差數列滿足,公差,等比數列滿足,,.求數列,的通項公式;若數列滿足,求的前項和.22.(10分)已知動圓過定點,且與直線相切,動圓圓心的軌跡為,過作斜率為的直線與交于兩點,過分別作的切線,兩切線的交點為,直線與交于兩點.(1)證明:點始終在直線上且;(2)求四邊形的面積的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
化簡復數,由它是純虛數,求得,從而確定對應的點的坐標.【詳解】是純虛數,則,,,對應點為,在第二象限.故選:B.【點睛】本題考查復數的除法運算,考查復數的概念與幾何意義.本題屬于基礎題.2.A【解析】
根據復數相等的特征,求出和,再利用復數的模公式,即可得出結果.【詳解】因為,所以,解得則.故選:A.【點睛】本題考查相等復數的特征和復數的模,屬于基礎題.3.D【解析】
如圖所示建立直角坐標系,設,則,計算得到答案.【詳解】如圖所示建立直角坐標系,則,,,設,則.當,即時等號成立.故選:.【點睛】本題考查了向量的計算,建立直角坐標系利用坐標計算是解題的關鍵.4.D【解析】因為的展開式中第4項與第8項的二項式系數相等,所以,解得,所以二項式中奇數項的二項式系數和為.考點:二項式系數,二項式系數和.5.C【解析】
由題可推斷出和都是直角三角形,設球心為,要使三棱錐的體積最大,則需滿足,結合幾何關系和圖形即可求解【詳解】先畫出圖形,由球心到各點距離相等可得,,故是直角三角形,設,則有,又,所以,當且僅當時,取最大值4,要使三棱錐體積最大,則需使高,此時,故選:C【點睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎題6.A【解析】
設點,則點,,利用向量數量積的坐標運算可得,利用二次函數的性質可得最值.【詳解】解:設點,則點,,,,當時,取最小值,最小值為.故選:A.【點睛】本題考查拋物線背景下的向量的坐標運算,考查學生的計算能力,是基礎題.7.A【解析】
根據復數的乘法運算化簡,由復數的意義即可求得的值.【詳解】復數,由復數乘法運算化簡可得,所以由復數定義可知,解得,故選:A.【點睛】本題考查了復數的乘法運算,復數的意義,屬于基礎題.8.C【解析】
可分成兩類,一類是3個新教師與一個老教師結對,其他一新一老結對,第二類兩個老教師各帶兩個新教師,一個老教師帶一個新教師,分別計算后相加即可.【詳解】分成兩類,一類是3個新教師與同一個老教師結對,有種結對結對方式,第二類兩個老教師各帶兩個新教師,有.∴共有結對方式60+90=150種.故選:C.【點睛】本題考查排列組合的綜合應用.解題關鍵確定怎樣完成新老教師結對這個事情,是先分類還是先分步,確定方法后再計數.本題中有一個平均分組問題.計數時容易出錯.兩組中每組中人數都是2,因此方法數為.9.B【解析】
易得,分子分母同乘以分母的共軛復數即可.【詳解】由已知,,所以.故選:B.【點睛】本題考查復數的乘法、除法運算,考查學生的基本計算能力,是一道容易題.10.A【解析】
由已知可得,根據二倍角公式即可求解.【詳解】角的頂點與原點重合,始邊與軸的正半軸重合,終邊經過點,則,.故選:A.【點睛】本題考查三角函數定義、二倍角公式,考查計算求解能力,屬于基礎題.11.C【解析】
由復數的幾何意義可得表示復數,對應的兩點間的距離,由兩點間距離公式即可求解.【詳解】由復數的幾何意義可得,復數對應的點為,復數對應的點為,所以,其中,故選C【點睛】本題主要考查復數的幾何意義,由復數的幾何意義,將轉化為兩復數所對應點的距離求值即可,屬于基礎題型.12.A【解析】
利用指數函數、對數函數的單調性直接求解.【詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關系為b>c>a.故選:A.【點睛】本題考查三個數的大小的判斷,考查指數函數、對數函數的單調性等基礎知識,考查運算求解能力,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據偶函數的定義列方程,化簡求得的值.【詳解】由于為偶函數,所以,即,即,即,即,即,即,即,所以.故答案為:【點睛】本小題主要考查根據函數的奇偶性求參數,考查運算求解能力,屬于中檔題.14.【解析】
根據題意計算,解得答案.【詳解】,故,解得.故答案為:.【點睛】本題考查了向量的數量積,意在考查學生的計算能力.15.【解析】
】由題意利用任意角的三角函數的定義,求得的值.【詳解】∵的終邊過點,若,.即答案為-2.【點睛】本題主要考查任意角的三角函數的定義和誘導公式,屬基礎題.16.【解析】
利用換元法,得到,利用導數求得函數的單調性和最值,即可得到函數的值域,得到答案.【詳解】由題意,可得,令,,即,則,當時,,當時,,即在為增函數,在為減函數,又,,,故函數的值域為:.【點睛】本題主要考查了三角函數的最值,以及利用導數研究函數的單調性與最值,其中解答中合理利用換元法得到函數,再利用導數求解函數的單調性與最值是解答的關鍵,著重考查了推理與預算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)將直線和曲線化為普通方程,聯立直線和曲線,可得交點坐標,可得的值;(2)可得曲線的參數方程,利用點到直線的距離公式結合三角形的最值可得答案.【詳解】解:(1)直線的普通方程為,的普通方程.聯立方程組,解得與的交點為,,則.(2)曲線的參數方程為(為參數),故點的坐標為,從而點到直線的距離是,由此當時,取得最小值,且最小值為.【點睛】本題主要考查參數方程與普通方程的轉化及參數方程的基本性質、點到直線的距離公式等,屬于中檔題.18.(1)曲線的直角坐標方程為;直線的直角坐標方程為(2)【解析】
(1)由公式可化極坐標方程為直角坐標方程,消參法可化參數方程為普通方程;(2)聯立兩曲線方程,解方程組得兩交點坐標,從而得兩點間距離.【詳解】解:(1)曲線的直角坐標方程為直線的直角坐標方程為(2)據解,得或【點睛】本題考查極坐標與直角坐標的互化,考查參數方程與普通方程的互化,屬于基礎題.19.(Ⅰ)最小值為;(Ⅱ)見解析【解析】
(1)根據題意構造平均值不等式,結合均值不等式可得結果;(2)利用分析法證明,結合常用不等式和均值不等式即可證明.【詳解】(Ⅰ)則當且僅當,即,時,所以的最小值為.(Ⅱ)要證明:,只需證:,即證明:,由,也即證明:.因為,所以當且僅當時,有,即,當時等號成立.所以【點睛】本題考查均值不等式,分析法證明不等式,審清題意,仔細計算,屬中檔題.20.(1),;(2),,.【解析】
(1)直接利用同角三角函數關系式的變換的應用求出結果.(2)首先把函數的關系式變形成正弦型函數,進一步利用正弦型函數的性質的應用求出結果.【詳解】(1)由題意得,,(2)由,解得,所以對稱軸為,.由,解得,所以單調遞增區(qū)間為.,【點睛】本題考查的知識要點:三角函數關系式的恒等變換,正弦型函數的性質的應用,主要考查學生的運算能力和轉換能力,屬于基礎題型.21.,;.【解析】
由,公差,有,,成等比數列,所以,解得.進而求出數列,的通項公式;當時,由,所以,當時,由,,可得,進而求出前項和.【詳解】解:由題意知,,公差,有1,,成等比數列,所以,解得.所以數列的通項公式.數列的公比,其通項公式.當時,由,所以.當時,由,,兩式相減得,所以.故所以的前項和,.又時,,也符合上式,故.【點睛】本題主要考查等差數列和等比數列的概念,通項公式,前項和公式的應用等基礎知識;考查運算求解能力,方程思想,分類討論思想,應用意識,屬于中檔題.22.(1)見解析(2)最小值為1.【解析】
(1)根據拋物線的定義,判斷出的軌跡為拋物線,并由此求得軌跡的方程.設出兩點的坐標,利用導數求得切線的方程,由此求得點的坐標.寫出直線的方程,聯立直線的方程和曲線的方程,根據韋達定理求得點的坐標,并由此判斷出始終在直線上,且.(2)設直線的傾斜角為,求得的表達式,求得的表達式,由此求得四邊形的面積的表達式進而求得四邊形的面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 快遞區(qū)域承包合同
- 合伙出資成立公司協(xié)議
- 瀝青水穩(wěn)運輸合同協(xié)議書
- 辦公桌椅購銷合同協(xié)議
- 裝修工程勞務分包合同書
- 建筑工程建設工程合同與索賠
- 浙教版高中信息技術必修1教學設計-3.3 多媒體信息處理
- 19父愛之舟 教學設計-2024-2025學年語文五年級上冊統(tǒng)編版
- 智能接地狀態(tài)在線監(jiān)測儀用在什么場所
- Unit5Fun clubs.SectionA1a-1d教學設計設計2024-2025學年人教版英語七年級上冊
- GA 814-2009 警用約束帶標準
- 釘釘考勤休假規(guī)定
- 海氏崗位價值評估法應用實踐課件
- 慢性腎病知識講座課件
- 國家自然科學基金申請經驗交流課件
- 領子的分類課件
- 農產品的互聯網營銷課件
- 三年級下冊數學課件 兩位數除兩、三位數 滬教版 (共15張PPT)
- 《六大茶類》講義
- X會計師事務所的J城投公司發(fā)債審計項目研究
- 中國傳媒大學全媒體新聞編輯:案例教學-課件-全媒體新聞編輯:案例教學-第7講
評論
0/150
提交評論