2022年貴州省安順市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁(yè)
2022年貴州省安順市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁(yè)
2022年貴州省安順市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁(yè)
2022年貴州省安順市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁(yè)
2022年貴州省安順市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年貴州省安順市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.A.x2+C

B.x2-x+C

C.2x2+x+C

D.2x2+C

3.∫cos3xdx=A.A.3sin3x+CB.-3sin3x+CC.(1/3)sin3x+CD.-(1/3)sin3x+C

4.若函數(shù)f(x)=5x,則f'(x)=

A.5x-1

B.x5x-1

C.5xln5

D.5x

5.設(shè)y=x2-e2,則y=

A.2x-2e

B.2x-e2

C.2x-e

D.2x

6.

7.A.I1=I2

B.I1>I2

C.I1<I2

D.無法比較

8.

()A.x2

B.2x2

C.xD.2x

9.設(shè)y=sin2x,則y'等于().A.A.-cos2xB.cos2xC.-2cos2xD.2cos2x

10.A.A.e-x+CB.-e-x+CC.ex+CD.-ex+C

11.設(shè)函數(shù)f(x)在[a,b]上連續(xù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的平面圖形的面積等于()。A.

B.

C.

D.

12.

A.-1/2

B.0

C.1/2

D.1

13.曲線y=x-3在點(diǎn)(1,1)處的切線斜率為()

A.-1B.-2C.-3D.-4

14.

15.下列關(guān)于構(gòu)建的幾何形狀說法不正確的是()。

A.軸線為直線的桿稱為直桿B.軸線為曲線的桿稱為曲桿C.等截面的直桿稱為等直桿D.橫截面大小不等的桿稱為截面桿

16.下列各式中正確的是

A.A.

B.B.

C.C.

D.D.

17.A.

B.0

C.ln2

D.-ln2

18.

19.設(shè)y=2-x,則y'等于()。A.2-xx

B.-2-x

C.2-xln2

D.-2-xln2

20.

二、填空題(20題)21.

22.

23.級(jí)數(shù)的收斂半徑為______.

24.y=lnx,則dy=__________。

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.過點(diǎn)M0(2,0,-1)且平行于的直線方程為______.

35.

36.

37.若當(dāng)x→0時(shí),2x2與為等價(jià)無窮小,則a=______.

38.

39.

40.設(shè)y=y(x)由方程x2+xy2+2y=1確定,則dy=______.

三、計(jì)算題(20題)41.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

42.求微分方程的通解.

43.求曲線在點(diǎn)(1,3)處的切線方程.

44.求微分方程y"-4y'+4y=e-2x的通解.

45.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

46.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

47.

48.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則

49.證明:

50.

51.將f(x)=e-2X展開為x的冪級(jí)數(shù).

52.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

53.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

54.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

55.

56.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

57.

58.

59.

60.

四、解答題(10題)61.

62.

63.

64.y=xlnx的極值與極值點(diǎn).

65.

66.

67.

68.

69.

70.

五、高等數(shù)學(xué)(0題)71.曲線y=x3一12x+1在區(qū)間(0,2)內(nèi)()。

A.凸且單增B.凹且單減C.凸且單增D.凹且單減

六、解答題(0題)72.

參考答案

1.C

2.B本題考查的知識(shí)點(diǎn)為不定積分運(yùn)算.

因此選B.

3.C

4.C本題考查了導(dǎo)數(shù)的基本公式的知識(shí)點(diǎn)。f'(x)=(5x)'=5xln5.

5.D

6.B解析:

7.C因積分區(qū)域D是以點(diǎn)(2,1)為圓心的一單位圓,且它位于直線x+y=1的上方,即在D內(nèi)恒有x+y>1,所以(x+y)2<(x+y)3.所以有I1<I2.

8.A

9.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t.

Y=sin2x,

則y'=cos(2x)·(2x)'=2cos2x.

可知應(yīng)選D.

10.B

11.C

12.B

13.C由導(dǎo)數(shù)的幾何意義知,若y=f(x)可導(dǎo),則曲線在點(diǎn)(x0,f(x0))處必定存在切線,且該切線的斜率為f"(x0)。由于y=x-3,y"=-3x-4,y"|x=1=-3,可知曲線y=x-3在點(diǎn)(1,1)處的切線斜率為-3,故選C。

14.B

15.D

16.B本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)。

對(duì)于選項(xiàng)A,當(dāng)0<x<1時(shí),x3<x2,則。對(duì)于選項(xiàng)B,當(dāng)1<x<2時(shí),Inx>(Inx)2,則。對(duì)于選項(xiàng)C,對(duì)于選讀D,不成立,因?yàn)楫?dāng)x=0時(shí),1/x無意義。

17.A為初等函數(shù),定義區(qū)間為,點(diǎn)x=1在該定義區(qū)間內(nèi),因此

故選A.

18.D

19.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯(cuò)誤選C,這是求復(fù)合函數(shù)的導(dǎo)數(shù)時(shí)丟掉項(xiàng)而造成的!因此考生應(yīng)熟記:若y=f(u),u=u(x),則

不要丟項(xiàng)。

20.A

21.

22.1/21/2解析:

23.

本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

所給級(jí)數(shù)為缺項(xiàng)情形,由于

24.(1/x)dx

25.

26.

解析:

27.1/2本題考查了對(duì)∞-∞型未定式極限的知識(shí)點(diǎn),

28.

本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.29.本題考查的知識(shí)點(diǎn)為極限運(yùn)算.

30.

31.

解析:

32.

33.

34.

35.

36.ln|1-cosx|+Cln|1-cosx|+C解析:

37.6;本題考查的知識(shí)點(diǎn)為無窮小階的比較.

當(dāng)于當(dāng)x→0時(shí),2x2與為等價(jià)無窮小,因此

可知a=6.

38.|x|

39.y=1y=1解析:

40.

;

41.函數(shù)的定義域?yàn)?/p>

注意

42.

43.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

44.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

45.

46.

47.

48.由等價(jià)無窮小量的定義可知

49.

50.

51.

52.

53.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

54.由二重積分物理意義知

55.由一階線性微分方程通解公式有

56.

列表:

說明

57.

58.

59.

60.

61.

62.

63.

64.y=xlnx的定義域?yàn)閤>0y'=1+lnx.令y'=0得駐點(diǎn)x1=e-1.當(dāng)0<x<e-1時(shí)y'<0;當(dāng)e-1<x時(shí)y'>0.可知x=e-1為y=xlnx的極小值點(diǎn).極小值為y=xlnx的定義域?yàn)閤>0y'=1+lnx.令y'=0得駐點(diǎn)x1=e-1.當(dāng)0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論