2020年高考數(shù)學(xué)(藝術(shù)生百日沖刺)專題08不等式測試題_第1頁
2020年高考數(shù)學(xué)(藝術(shù)生百日沖刺)專題08不等式測試題_第2頁
2020年高考數(shù)學(xué)(藝術(shù)生百日沖刺)專題08不等式測試題_第3頁
2020年高考數(shù)學(xué)(藝術(shù)生百日沖刺)專題08不等式測試題_第4頁
2020年高考數(shù)學(xué)(藝術(shù)生百日沖刺)專題08不等式測試題_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

專題8不等式測試題命題報(bào)告:.高頻考點(diǎn):一元二次不等式、不等式的性質(zhì)、基本不等式、簡單的線性規(guī)劃以及不等式的應(yīng)用。.考情分析:高考主要以選擇題填空題形式出現(xiàn),分值 10分左右,在客觀題中考察不等式的解法以及不等式的性質(zhì)、簡單的線性規(guī)劃等知識(shí),二是把不等式作為工具滲透到函數(shù)、數(shù)列、解析幾何等的解 『答題中,客觀題比較容易,解答題需要綜合各方面知識(shí)求解。.重點(diǎn)推薦:第16題,逆向考察,需要掌握分類討論思想的應(yīng)用,正確分類才能夠求解。一.選擇題(共12小題,每一題5分).設(shè)0vavb<1,則下列不等式成立的是( )A.a3>b3 B. C.ab>1D.lg(b—a)<0ab【答案】:D【解析】因?yàn)?<a<b<1,由不等式的基本性質(zhì)可知: a3vb3,故A不正確;所以B不正確;由指ab|數(shù)函數(shù)的圖形與性質(zhì)可知 ab<1,所以C不正確;由題意可知b-aC(0,1),所以lg(b-a)<0,正確;故選D.2.關(guān)于x的不等式ax-bv0的解集是(1,+8),則關(guān)于x的不等式(ax+b)(x-3)>0的解集是( )A.(-OO,-1)U(3,+8)B.(1,3) C.(T,3)D.(-巴1)U(3,+8)【答案】:C【解析】關(guān)于x的不等式ax-bv0的解集是(1,+8),即不等式axvb的解集是(1,+8),a=b<0;??.不等式(ax+b)「(x-3)>0可化為(x+1)(x-3)v0,解得-1vxv3,??.該不等式的解集是(-1,3).故選:C..已知關(guān)于x的不等式kx2-6kx+k+8>0對任意xCR恒成立,則k的取值范圍是( )A.0<k<1B.0<k<1C,k<0或k>1D.kW0或k>1【答案】:A【解析】當(dāng)k=0時(shí),不等式kx2-6kx+k+8>0化為8>0恒成立,當(dāng)k<0時(shí),不等式kx2-6kx+k+8>0不能恒成立,當(dāng)k>0時(shí),要使不等式kx2-6kx+k+8>0恒成立,需4=36k2-4(k2+8k)&0,解得0Wkw1,故選:A..知兩實(shí)數(shù)m>0,n>0,且3m+n=3,貝U8+二有( )mnD.最小值9A.最大值3 B.最大值1 C.D.最小值9【答案】:D【解析】兩實(shí)數(shù)口>0,且3m+n="則&+工旦)3+1及+園》"膽趣口2%raninn3 3mny3mn當(dāng)且僅當(dāng)n=l取等號(hào),3故選;D.TOC\o"1-5"\h\z.已知方程2x2-(m+1)x+m=0有兩個(gè)不等正實(shí)根,則實(shí)數(shù)m的取值范圍是( )0<mC3-2J2 / lr rA, 或m>3T2近B,m<3-R2或川>3+2⑦0<m<3-2J2 『 「、 「C. 或m>3+2aD.M3-26或e【答案】:C【解析】?一方程2x2-(m+1)x+m=0有兩個(gè)不等正實(shí)根,「.△=(-m-1)2-8mr>0,即m2-6m+1>0,求得mx3—2-萬,或m>3+2>/2,再根據(jù)兩根之和為史叢>0,且兩根之積為史>0,求得m>0.4 2綜合可得,0vm<3-2、叵或m>3+2%歷,故選:C.乂41,x+Sy-l^Ox-ky>0TOC\o"1-5"\h\z6.實(shí)數(shù)x,y滿足, ,若z=3x+y的最小值為1,則正實(shí)數(shù)k=( )A.2 B.1 C.— D」2 4【答案】C【解析】目標(biāo)函數(shù)z=3x+y的最小值為1,1.y=-3x+z,要使目標(biāo)函數(shù)z=3x+y的最小值為1,則平面區(qū)域位于直線y=-3x+z的右上方,即3x+y=1,

作出不等式組對應(yīng)的平面區(qū)域如圖:則目標(biāo)函數(shù)經(jīng)過點(diǎn)A,由『3吐產(chǎn)1作出不等式組對應(yīng)的平面區(qū)域如圖:則目標(biāo)函數(shù)經(jīng)過點(diǎn)A,由『3吐產(chǎn)11.x+2y-l=0,解得A(!.,.1.),同時(shí)A也在直線x—ky=0時(shí),即上一Zk=0,解得k=—,故選:C.(2020屆?新羅區(qū)校級(jí)月考)函數(shù)y=ax-2(a>0,且aw1)的圖象恒過定點(diǎn)a,若點(diǎn)A在一次函數(shù)y=mx+4n的圖象上,其中成n>0,則JL十目的最小值為( )mnA.8 B.9 C.18 D.16【答案】:C【解新】函數(shù)y=ax2(a>0,且aw1)的圖象恒過定點(diǎn)A,令x-2=0,可得x=2,帶入可得y=1,恒過定點(diǎn)A(2,1).那么1=2m+4n.3x-y-6=0Ey=6,即A(4,6).目標(biāo)函數(shù)z=ax+by(a>0,即4a+6b=12,3x-y-6=0Ey=6,即A(4,6).目標(biāo)函數(shù)z=ax+by(a>0,即4a+6b=12,即2a+3b=6,而612分b>0)取得最大12,2a1-3b13故工一甘二的最/」、值為: 亍工ab 621.已知函數(shù)f(x)=m?6x-4x,mCR.(1)當(dāng)m=Z時(shí),求滿足f(x+1)>f(x)的實(shí)數(shù)x的范圍;15(2)若f(x)W9x對任意的xCR恒成立,求實(shí)數(shù)m的范圍.【解析】:(1)當(dāng)m=L時(shí),f(x+1)>f(x)15即為JL?6x+1—4x+1>JL.6x-4x,15 15化簡得,(,)xv卷,解得x>2.則滿足條件的x的范圍是(2,+8); 6分(2)f(x)<9x對任意的xCR恒成立即為m?6-4xW9x,即me9”*=(=)x+(gx對任意的xCR恒成立,由于(芻「x+(])x>2,當(dāng)且僅當(dāng)x=0取最小值2.則m<2.故「實(shí)數(shù)m的范圍是(-巴 2],……12分22某人欲投資A,B兩支股票時(shí),不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損,根據(jù)預(yù)測, A,B兩支股票可能的最大盈利率分別為 40%口80%可能的最大虧損率分別為 10噂口30%若投資金額不超過15萬元.根據(jù)投資意向,A股的投資額不大于B股投資額的3倍,且確保可能的資金虧損不超過 2.7萬元,

設(shè)該人分別用x萬元,y萬元投資A,B兩支股票.(I)用x,y列出滿足投資條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;(n)問該人對A,B兩支股票各投資多少萬元,才能使可能的盈利最大?并求出此最大利潤.1E*0,1k+0, 7【解析】(I)由題意可知,約束條件為畫出約束條件的可行域如圖:(n)設(shè)禾1J潤為z,貝Uz=0.4x+0.8y,即y=--x+—z24平移直線y=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論