江西省安福第二中學2022年高三第五次模擬考試數學試卷含解析_第1頁
江西省安福第二中學2022年高三第五次模擬考試數學試卷含解析_第2頁
江西省安福第二中學2022年高三第五次模擬考試數學試卷含解析_第3頁
江西省安福第二中學2022年高三第五次模擬考試數學試卷含解析_第4頁
江西省安福第二中學2022年高三第五次模擬考試數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若滿足約束條件則的最大值為()A.10 B.8 C.5 D.32.棱長為2的正方體內有一個內切球,過正方體中兩條異面直線,的中點作直線,則該直線被球面截在球內的線段的長為()A. B. C. D.13.已知是等差數列的前項和,若,,則()A.5 B.10 C.15 D.204.已知函數,滿足對任意的實數,都有成立,則實數的取值范圍為()A. B. C. D.5.將一塊邊長為的正方形薄鐵皮按如圖(1)所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐形容器,將該容器按如圖(2)放置,若其正視圖為等腰直角三角形,且該容器的容積為,則的值為()A.6 B.8 C.10 D.126.框圖與程序是解決數學問題的重要手段,實際生活中的一些問題在抽象為數學模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計算一組數據的方差,設計了如圖所示的程序框圖,其中輸入,,,,,,,則圖中空白框中應填入()A., B. C., D.,7.如圖,平面與平面相交于,,,點,點,則下列敘述錯誤的是()A.直線與異面B.過只有唯一平面與平行C.過點只能作唯一平面與垂直D.過一定能作一平面與垂直8.已知向量,且,則m=()A.?8 B.?6C.6 D.89.設全集,集合,,則集合()A. B. C. D.10.若關于的不等式有正整數解,則實數的最小值為()A. B. C. D.11.在復平面內,復數(為虛數單位)的共軛復數對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.對兩個變量進行回歸分析,給出如下一組樣本數據:,,,,下列函數模型中擬合較好的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的常數項為_______.14.已知雙曲線()的左右焦點分別為,為坐標原點,點為雙曲線右支上一點,若,,則雙曲線的離心率的取值范圍為_____.15.已知數列的前項和為,,且滿足,則數列的前10項的和為______.16.已知,(,),則=_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知三棱錐P-ABC(如圖一)的平面展開圖(如圖二)中,四邊形ABCD為邊長等于的正方形,和均為正三角形,在三棱錐P-ABC中:(1)證明:平面平面ABC;(2)若點M在棱PA上運動,當直線BM與平面PAC所成的角最大時,求直線MA與平面MBC所成角的正弦值.18.(12分)已知橢圓C:(a>b>0)的兩個焦點分別為F1(-,0)、F2(,0).點M(1,0)與橢圓短軸的兩個端點的連線相互垂直.(1)求橢圓C的方程;(2)已知點N的坐標為(3,2),點P的坐標為(m,n)(m≠3).過點M任作直線l與橢圓C相交于A、B兩點,設直線AN、NP、BN的斜率分別為k1、k2、k3,若k1+k3=2k2,試求m,n滿足的關系式.19.(12分)已知數列,其前項和為,若對于任意,,且,都有.(1)求證:數列是等差數列(2)若數列滿足,且等差數列的公差為,存在正整數,使得,求的最小值.20.(12分)萬眾矚目的第14屆全國冬季運動運會(簡稱“十四冬”)于2020年2月16日在呼倫貝爾市盛大開幕,期間正值我市學校放寒假,寒假結束后,某校工會對全校100名教職工在“十四冬”期間每天收看比賽轉播的時間作了一次調查,得到如圖頻數分布直方圖:(1)若將每天收看比賽轉播時間不低于3小時的教職工定義為“冰雪迷”,否則定義為“非冰雪迷”,請根據頻率分布直方圖補全列聯(lián)表;并判斷能否有的把握認為該校教職工是否為“冰雪迷”與“性別”有關;(2)在全?!氨┟浴敝邪葱詣e分層抽樣抽取6名,再從這6名“冰雪迷”中選取2名作冰雪運動知識講座.記其中女職工的人數為,求的分布列與數學期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,21.(12分)根據國家統(tǒng)計局數據,1978年至2018年我國GDP總量從0.37萬億元躍升至90萬億元,實際增長了242倍多,綜合國力大幅提升.將年份1978,1988,1998,2008,2018分別用1,2,3,4,5代替,并表示為;表示全國GDP總量,表中,.326.4741.90310209.7614.05(1)根據數據及統(tǒng)計圖表,判斷與(其中為自然對數的底數)哪一個更適宜作為全國GDP總量關于的回歸方程類型?(給出判斷即可,不必說明理由),并求出關于的回歸方程.(2)使用參考數據,估計2020年的全國GDP總量.線性回歸方程中斜率和截距的最小二乘法估計公式分別為:,.參考數據:45678的近似值551484031097298122.(10分)已知數列的各項都為正數,,且.(Ⅰ)求數列的通項公式;(Ⅱ)設,其中表示不超過x的最大整數,如,,求數列的前2020項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

畫出可行域,將化為,通過平移即可判斷出最優(yōu)解,代入到目標函數,即可求出最值.【詳解】解:由約束條件作出可行域如圖,化目標函數為直線方程的斜截式,.由圖可知當直線過時,直線在軸上的截距最大,有最大值為3.故選:D.【點睛】本題考查了線性規(guī)劃問題.一般第一步畫出可行域,然后將目標函數轉化為的形式,在可行域內通過平移找到最優(yōu)解,將最優(yōu)解帶回到目標函數即可求出最值.注意畫可行域時,邊界線的虛實問題.2.C【解析】

連結并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,推導出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內的線段的長.【詳解】如圖,MN為該直線被球面截在球內的線段連結并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【點睛】本題主要考查該直線被球面截在球內的線段的長的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.3.C【解析】

利用等差通項,設出和,然后,直接求解即可【詳解】令,則,,∴,,∴.【點睛】本題考查等差數列的求和問題,屬于基礎題4.B【解析】

由題意可知函數為上為減函數,可知函數為減函數,且,由此可解得實數的取值范圍.【詳解】由題意知函數是上的減函數,于是有,解得,因此,實數的取值范圍是.故選:B.【點睛】本題考查利用分段函數的單調性求參數,一般要分析每支函數的單調性,同時還要考慮分段點處函數值的大小關系,考查運算求解能力,屬于中等題.5.D【解析】

推導出,且,,,設中點為,則平面,由此能表示出該容器的體積,從而求出參數的值.【詳解】解:如圖(4),為該四棱錐的正視圖,由圖(3)可知,,且,由為等腰直角三角形可知,,設中點為,則平面,∴,∴,解得.故選:D【點睛】本題考查三視圖和錐體的體積計算公式的應用,屬于中檔題.6.A【解析】

依題意問題是,然后按直到型驗證即可.【詳解】根據題意為了計算7個數的方差,即輸出的,觀察程序框圖可知,應填入,,故選:A.【點睛】本題考查算法與程序框圖,考查推理論證能力以及轉化與化歸思想,屬于基礎題.7.D【解析】

根據異面直線的判定定理、定義和性質,結合線面垂直的關系,對選項中的命題判斷.【詳解】A.假設直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據異面直線的性質知,過只有唯一平面與平行,故正確.C.根據過一點有且只有一個平面與已知直線垂直知,故正確.D.根據異面直線的性質知,過不一定能作一平面與垂直,故錯誤.故選:D【點睛】本題主要考查異面直線的定義,性質以及線面關系,還考查了理解辨析的能力,屬于中檔題.8.D【解析】

由已知向量的坐標求出的坐標,再由向量垂直的坐標運算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點睛】本題考查平面向量的坐標運算,考查向量垂直的坐標運算,屬于基礎題.9.C【解析】∵集合,,∴點睛:本題是道易錯題,看清所問問題求并集而不是交集.10.A【解析】

根據題意可將轉化為,令,利用導數,判斷其單調性即可得到實數的最小值.【詳解】因為不等式有正整數解,所以,于是轉化為,顯然不是不等式的解,當時,,所以可變形為.令,則,∴函數在上單調遞增,在上單調遞減,而,所以當時,,故,解得.故選:A.【點睛】本題主要考查不等式能成立問題的解法,涉及到對數函數的單調性的應用,構造函數法的應用,導數的應用等,意在考查學生的轉化能力,屬于中檔題.11.D【解析】

將復數化簡得,,即可得到對應的點為,即可得出結果.【詳解】,對應的點位于第四象限.故選:.【點睛】本題考查復數的四則運算,考查共軛復數和復數與平面內點的對應,難度容易.12.D【解析】

作出四個函數的圖象及給出的四個點,觀察這四個點在靠近哪個曲線.【詳解】如圖,作出A,B,C,D中四個函數圖象,同時描出題中的四個點,它們在曲線的兩側,與其他三個曲線都離得很遠,因此D是正確選項,故選:D.【點睛】本題考查回歸分析,擬合曲線包含或靠近樣本數據的點越多,說明擬合效果好.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

寫出展開式的通項公式,考慮當的指數為零時,對應的值即為常數項.【詳解】的展開式通項公式為:,令,所以,所以常數項為.

故答案為:.【點睛】本題考查二項展開式中指定項系數的求解,難度較易.解答問題的關鍵是,能通過展開式通項公式分析常數項對應的取值.14.【解析】

法一:根據直角三角形的性質和勾股定理得,,,又由雙曲線的定義得,將離心率表示成關于的式子,再令,則,令對函數求導研究函數在上單調性,可求得離心率的范圍.法二:令,,,,,根據直角三角形的性質和勾股定理得,將離心率表示成關于角的三角函數,根據三角函數的恒等變化轉化為關于的函數,可求得離心率的范圍.【詳解】法一:,,,,,,設,則,令,所以時,,在上單調遞增,,,.法二:,,令,,,,,,,,,.故答案為:.【點睛】本題考查求雙曲線的離心率的范圍的問題,關鍵在于將已知條件轉化為與雙曲線的有關,從而將離心率表示關于某個量的函數,屬于中檔題.15.1【解析】

由得時,,兩式作差,可求得數列的通項公式,進一步求出數列的和.【詳解】解:數列的前項和為,,且滿足,①當時,,②①-②得:,整理得:(常數),故數列是以為首項,2為公比的等比數列,所以(首項不符合通項),故,所以:,故答案為:1.【點睛】本題主要考查數列的通項公式的求法及應用,數列的前項和的公式,屬于基礎題.16.【解析】

先利用倍角公式及差角公式把已知條件化簡可得,平方可得.【詳解】∵,∴,則,平方可得.故答案為:.【點睛】本題主要考查三角恒等變換,倍角公式的合理選擇是求解的關鍵,側重考查數學運算的核心素養(yǎng).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)【解析】

(1)設的中點為,連接.由展開圖可知,,.為的中點,則有,根據勾股定理可證得,則平面,即可證得平面平面.(2)由線面成角的定義可知是直線與平面所成的角,且,最大即為最短時,即是的中點建立空間直角坐標系,求出與平面的法向量利用公式即可求得結果.【詳解】(1)設AC的中點為O,連接BO,PO.由題意,得,,.在中,,O為AC的中點,,在中,,,,,.,平面,平面ABC,平面PAC,平面平面ABC.(2)由(1)知,,,平面PAC,是直線BM與平面PAC所成的角,且,當OM最短時,即M是PA的中點時,最大.由平面ABC,,,,于是以OC,OB,OD所在直線分別為x軸,y軸,z軸建立如圖示空間直角坐標系,則,,設平面MBC的法向量為,直線MA與平面MBC所成角為,則由得:.令,得,,即.則.直線MA與平面MBC所成角的正弦值為.【點睛】本題考查面面垂直的證明,考查線面成角問題,借助空間向量是解決線面成角問題的關鍵,難度一般.18.(1);(2)m-n-1=0【解析】試題分析:(1)利用M與短軸端點構成等腰直角三角形,可求得b的值,進而得到橢圓方程;(2)設出過M的直線l的方程,將l與橢圓C聯(lián)立,得到兩交點坐標關系,然后將k1+k3表示為直線l斜率的關系式,化簡后得k1+k3=2,于是可得m,n的關系式.試題解析:(1)由題意,c=,b=1,所以a=故橢圓C的方程為(2)①當直線l的斜率不存在時,方程為x=1,代入橢圓得,y=±不妨設A(1,),B(1,-)因為k1+k3==2又k1+k3=2k2,所以k2=1所以m,n的關系式為=1,即m-n-1=0②當直線l的斜率存在時,設l的方程為y=k(x-1)將y=k(x-1)代入,整理得:(3k2+1)x2-6k2x+3k2-3=0設A(x1,y1),B(x2,y2),則又y1=k(x1-1),y2=k(x2-1)所以k1+k3======2所以2k2=2,所以k2==1所以m,n的關系式為m-n-1=0綜上所述,m,n的關系式為m-n-1=0.考點:橢圓標準方程,直線與橢圓位置關系,19.(1)證明見解析;(2).【解析】

(1)用數學歸納法證明即可;(2)根據條件可得,然后將用,,表示出來,根據是一個整數,可得結果.【詳解】解:(1)令,,則即∴,∴成等差數列,下面用數學歸納法證明數列是等差數列,假設成等差數列,其中,公差為,令,,∴,∴,即,∴成等差數列,∴數列是等差數列;(2),,若存在正整數,使得是整數,則,設,,∴是一個整數,∴,從而又當時,有,綜上,的最小值為.【點睛】本題主要考查由遞推關系得通項公式和等差數列的性質,關鍵是利用數學歸納法證明數列是等差數列,屬于難題.20.(1)列聯(lián)表見解析,有把握;(2)分布列見解析,.【解析】

(1)根據頻率分布直方圖補全列聯(lián)表,求出,從而有的把握認為該校教職工是否為“冰雪迷”與“性別”有關.(2)在全校“冰雪迷”中按性別分層抽樣抽取6名,則抽中男教工:人,抽中女教工:人,從這6名“冰雪迷”中選取2名作冰雪運動知識講座.記其中女職工的人數為,則的可能取值為0,1,2,分別求出相應的概率,由此能求出的分布列和數學期望.【詳解】解:(1)由題意得下表

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論