版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.拋物線y=﹣3(x﹣1)2+3的頂點坐標是()A.(﹣1,﹣3) B.(﹣1,3) C.(1,﹣3) D.(1,3)2.如圖,菱形ABCD的邊長為6,∠ABC=120°,M是BC邊的一個三等分點,P是對角線AC上的動點,當PB+PM的值最小時,PM的長是()A. B. C. D.3.如圖,AB是⊙O的直徑,CD是⊙O的弦,∠ACD=40°,則∠BAD為()A.40° B.50° C.60° D.70°4.若點A(2,),B(-3,),C(-1,)三點在拋物線的圖象上,則、、的大小關系是()A.B.C.D.5.如圖,將直尺與含30°角的三角尺放在一起,若∠1=25°,則∠2的度數(shù)是()A.30° B.45° C.55° D.60°6.若關于x的一元二次方程kx2﹣2x﹣1=0有實數(shù)根,則k的取值范圍是()A.k≥﹣1且k≠0 B.k≥﹣1 C.k≤1 D.k≤1且k≠07.如果用配方法解方程x2-2x-3=0,那么原方程應變形為(A.(x-1)2=4 B.(x+1)2=48.已知拋物線y=﹣x2+4x+3,則該拋物線的頂點坐標為()A.(﹣2,7) B.(2,7) C.(2,﹣9) D.(﹣2,﹣9)9.下列關系式中,是反比例函數(shù)的是()A. B. C. D.10.一個不透明的口袋中裝有4個完全相同的小球,把它們分別標號為1,2,3,4,隨機摸出一個小球后不放回,再隨機摸出一個小球,則兩次摸出的小球標號之和等于6的概率為()A. B. C. D.11.一元二次方程的根的情況是()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.只有一個實數(shù)根 D.沒有實數(shù)根12.如圖,在△ABC中,點D,E,F(xiàn)分別是邊AB,AC,BC上的點,DE∥BC,EF∥AB,且AD∶DB=3∶5,那么CF∶CB等于()A.5∶8 B.3∶8 C.3∶5 D.2∶5二、填空題(每題4分,共24分)13.已知反比例函數(shù),當_______時,其圖象在每個象限內(nèi)隨的增大而增大.14.已知向量為單位向量,如果向量與向量方向相反,且長度為3,那么向量=________.(用單位向量表示)15.已知在中,,,,那么_____________.16.在比例尺為1:3000000的地圖上,測得AB兩地間的圖上距離為5厘米,則AB兩地間的實際距離是______千米.17.已知△ABC與△DEF相似,且△ABC與△DEF的相似比為2:3,若△DEF的面積為36,則△ABC的面積等于________.18.如圖,在□ABCD中,AC與BD交于點M,點F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,點E是BC的中點,若點P以1cm/秒的速度從點A出發(fā),沿AD向點F運動;點Q同時以2cm/秒的速度從點C出發(fā),沿CB向點B運動.點P運動到F點時停止運動,點Q也同時停止運動.當點P運動_____秒時,以點P、Q、E、F為頂點的四邊形是平行四邊形.三、解答題(共78分)19.(8分)某廣場有一個小型噴泉,水流從垂直于地面的水管OA噴出,OA長為1.5米.水流在各個方向上沿形狀相同的拋物線路徑落到地面上,某方向上拋物線路徑的形狀如圖所示,落點B到O的距離為3米.建立平面直角坐標系,水流噴出的高度y(米)與水平距離x(米)之間近似滿足函數(shù)關系(1)求y與x之間的函數(shù)關系式;(2)求水流噴出的最大高度.20.(8分)某服裝柜在銷售中發(fā)現(xiàn):進貨價為每件元,銷售價為每件元的某品牌服裝平均每天可售出件,現(xiàn)商場決定采取適當?shù)慕祪r措施,擴大銷售量,增加盈利,經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件服裝降價元,那么平均每天就可多售出件,要想平均每天銷售這種服裝盈利元,同時又要使顧客得到較多的實惠,那么每件服裝應降價多少元?21.(8分)在3×3的方格紙中,點A、B、C、D、E、F分別位于如圖所示的小正方形的頂點上.(1).從A、D、E、F四點中任意取一點,以所取的這一點及B、C為頂點三角形,則所畫三角形是等腰三角形的概率是;(2).從A、D、E、F四點中先后任意取兩個不同的點,以所取的這兩點及B、C為頂點畫四邊形,求所畫四邊形是平行四邊形的概率(用樹狀圖或列表求解).22.(10分)如圖,直線y=x+2與拋物線y=ax2+bx+6相交于A(,)和B(4,m),直線AB交x軸于點E,點P是線段AB上異于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.(1)求拋物線的解析式.(2)連結AC、BC,是否存在一點P,使△ABC的面積等于14?若存在,請求出此時點P的坐標;若不存在,請說明理由.(3)若△PAC與△PDE相似,求點P的坐標.23.(10分)在一個不透明的袋子里,裝有3個分別標有數(shù)字﹣1,1,2的乒乓球,他們的形狀、大小、質(zhì)地等完全相同,隨機取出1個乒乓球.(1)寫出取一次取到負數(shù)的概率;(2)小明隨機取出1個乒乓球,記下數(shù)字后放回袋子里,搖勻后再隨機取出1個乒兵球,記下數(shù)字.用畫樹狀圖或列表的方法求“第一次得到的數(shù)與第二次得到的數(shù)的積為正數(shù)”發(fā)生的概率.24.(10分)如圖,在△ABC中,AB=5,AC=3,BC=4,將△ABC繞點A逆時針旋轉(zhuǎn)30°后得到△ADE,點B經(jīng)過的路線為弧BD求圖中陰影部分的面積.25.(12分)為了響應國家“大眾創(chuàng)業(yè)、萬眾創(chuàng)新”的雙創(chuàng)政策,大學生小王與同學合伙向市政府申請了10萬元的無息創(chuàng)業(yè)貸款,他們用這筆貸款,注冊了一家網(wǎng)店,招收了6名員工,銷售一種火爆的電子產(chǎn)品,并約定用該網(wǎng)店經(jīng)營的利潤,逐月償還這筆無息貸款.已知該產(chǎn)品的成本為每件4元,員工每人每月的工資為3500元,該網(wǎng)店每月還需支付其它費用0.9萬元.開工后的第一個月,小王他們將該電子產(chǎn)品的銷售單價定為6元,結果當月銷售了1.8萬件.(1)小王他們第一個月可以償還多少萬元的無息貸款?(2)從第二個月開始,他們打算上調(diào)該電子產(chǎn)品的銷售單價,經(jīng)過市場調(diào)研他們得出:如果單價每上漲1元,月銷售量將在現(xiàn)有基礎上減少1000件,且物價局規(guī)定該電子產(chǎn)品的銷售單價不得超過成本價的250%.小王他們計劃在第二個月償還3.4萬元的無息貸款,他們應該將該電子產(chǎn)品的銷售單價定為多少元?26.如圖1,若要建一個長方形雞場,雞場的一邊靠墻(墻長18米),墻對面有一個2米寬的門,另三邊用竹籬笆圍成,籬笆總長33米.求:(1)若雞場面積150平方米,雞場的長和寬各為多少米?(2)雞場面積可能達到200平方米嗎?(3)如圖2,若在雞場內(nèi)要用竹籬笆加建一道隔欄,則雞場最大面積可達多少平方米?
參考答案一、選擇題(每題4分,共48分)1、D【分析】直接根據(jù)頂點式的特點求頂點坐標.【詳解】解:∵y=﹣3(x﹣1)2+3是拋物線的頂點式,∴頂點坐標為(1,3).故選:D.【點睛】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關鍵,即在y=a(x?h)2+k中,對稱軸為x=h,頂點坐標為(h,k).2、A【分析】如圖,連接DP,BD,作DH⊥BC于H.當D、P、M共線時,P′B+P′M=DM的值最小,利用勾股定理求出DM,再利用平行線的性質(zhì)即可解決問題.【詳解】如圖,連接DP,BD,作DH⊥BC于H.∵四邊形ABCD是菱形,∴AC⊥BD,B、D關于AC對稱,∴PB+PM=PD+PM,∴當D、P、M共線時,P′B+P′M=DM的值最小,∵CM=BC=2,∵∠ABC=120°,∴∠DBC=∠ABD=60°,∴△DBC是等邊三角形,∵BC=6,∴CM=2,HM=1,DH=,在Rt△DMH中,DM===,∵CM∥AD,∴==,∴P′M=DM=.故選A.【點睛】本題考查軸對稱﹣最短問題、菱形的性質(zhì)、等邊三角形的判定和性質(zhì)、勾股定理、平行線分線段成比例定理等知識,解題的關鍵是靈活應用所學知識解決問題,屬于中考常考題型.3、B【分析】連接BD,根據(jù)直徑所對的圓周角是直角可得∠ADB的度數(shù),然后在根據(jù)同弧所對的圓周角相等即可解決問題.【詳解】解:如圖,連接BD.∵AB是直徑,∴∠ADB=90°,∵∠B=∠C=40°,∴∠DAB=90°﹣40°=50°,故選:B.【點睛】本題考查的是直徑所對的圓周角是直角與同弧所對的圓周角相等的知識,能夠連接BD是解題的關鍵.4、C【解析】首先求出二次函數(shù)的圖象的對稱軸x==2,且由a=1>0,可知其開口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在對稱軸的左側,而在對稱軸的左側,y隨x得增大而減小,所以.總結可得.故選C.點睛:此題主要考查了二次函數(shù)的圖像與性質(zhì),解答此題的關鍵是(1)找到二次函數(shù)的對稱軸;(2)掌握二次函數(shù)的圖象性質(zhì).5、C【分析】通過三角形外角的性質(zhì)得出∠BEF=∠1+∠F,再利用平行線的性質(zhì)∠2=∠BEF即可.【詳解】∵∠BEF是△AEF的外角,∠1=25°,∠F=30°,∴∠BEF=∠1+∠F=55°,∵AB∥CD,∴∠2=∠BEF=55°,故選:C.【點睛】本題主要考查平行線的性質(zhì)及三角形外角的性質(zhì),掌握三角形外角的性質(zhì)及平行線的性質(zhì)是解題的關鍵.6、A【分析】根據(jù)一元二次方程的定義和判別式的意義得到k≠1且△=22-4k×(-1)≥1,然后求出兩個不等式的公共部分即可.【詳解】根據(jù)題意得k≠1且△=22-4k×(-1)≥1,解得k≥-1且k≠1.故選A.【點睛】本題考查了一元二次方程ax2+bx+c=1(a≠1)的根的判別式△=b2-4ac:當△>1,方程有兩個不相等的實數(shù)根;當△=1,方程有兩個相等的實數(shù)根;當△<1,方程沒有實數(shù)根.也考查了一元二次方程的定義.7、A【解析】先移項,再配方,即方程兩邊同時加上一次項系數(shù)一般的平方.【詳解】解:移項得,x2?2x=3,配方得,x2?2x+1=4,即(x?1)2=4,故選:A.【點睛】本題考查了用配方法解一元二次方程,掌握配方法的步驟是解題的關鍵.8、B【分析】將題目中的函數(shù)解析式化為頂點式,即可寫出該拋物線的頂點坐標.【詳解】∵拋物線y=﹣x2+4x+3=﹣(x﹣2)2+7,∴該拋物線的頂點坐標是(2,7),故選:B.【點睛】本題考查二次函數(shù)的頂點式,解答本題的關鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.9、B【解析】根據(jù)反比例函數(shù)、一次函數(shù)、二次函數(shù)的定義可得答案.【詳解】解:y=2x-1是一次函數(shù),故A錯誤;是反比例函數(shù),故B正確;
y=x2是二次函數(shù),故C錯誤;是一次函數(shù),故D錯誤;
故選:B.【點睛】此題考查反比例函數(shù)、一次函數(shù)、二次函數(shù)的定義,解題關鍵在于理解和掌握反比例函數(shù)、一次函數(shù)、二次函數(shù)的意義.10、A【解析】畫樹狀圖得出所有的情況,根據(jù)概率的求法計算概率即可.【詳解】畫樹狀圖得:∵共有12種等可能的結果,兩次摸出的小球標號之和等于6的有2種情況,∴兩次摸出的小球標號之和等于6的概率故選A.【點睛】考查概率的計算,明確概率的意義是解題的關鍵,概率等于所求情況數(shù)與總情況數(shù)的比.11、D【分析】先計算判別式的值,然后根據(jù)判別式的意義判斷方程根的情況.【詳解】∵△=62-4×(-1)×(-10)=36-40=-4<0,
∴方程沒有實數(shù)根.
故選D.【點睛】此題考查一元二次方程的根的判別式,解題關鍵在于掌握方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.12、A【解析】∵DE∥BC,EF∥AB,∴,,∴,∴,∴,即.故選A.點睛:若,則,.二、填空題(每題4分,共24分)13、【分析】根據(jù)反比例函數(shù)的性質(zhì)求出m的取值范圍即可.【詳解】∵反比例函數(shù)在每個象限內(nèi)隨的增大而增大∴解得故答案為:.【點睛】本題考查了反比例函數(shù)的問題,掌握反比例函數(shù)的性質(zhì)是解題的關鍵.14、【解析】因為向量為單位向量,向量與向量方向相反,且長度為3,所以=,故答案為:.15、1【分析】根據(jù)三角函數(shù)的定義即可求解.【詳解】∵cotB=,
∴AC==3BC=1.
故答案是:1.【點睛】此題考查銳角三角函數(shù)的定義及運用,解題關鍵在于掌握在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊,余切為鄰邊比對邊.16、150【分析】設實際距離為x千米,根據(jù)比例尺=圖上距離:實際距離計算即可得答案.【詳解】設實際距離為x千米,5厘米=0.00005千米,∵比例尺為1:3000000,圖上距離為5cm,∴1:3000000=0.00005:x,解得:x=150(千米),故答案為:150【點睛】本題考查了比例尺的定義,能夠根據(jù)比例尺由圖上距離正確計算實際距離是解題關鍵,注意單位的換算.17、16【分析】利用相似三角形面積比等于相似比的平方求解即可.【詳解】解:∵ABC與DEF相似,且ΔABC與ΔDEF的相似比為2:3,∴,∵ΔDEF的面積為36,∴∴ΔABC的面積等于16,故答案為16.【點睛】本題考查了相似三角形的性質(zhì),熟記相似三角形的面積比等于相似比的平方是解決本題的關鍵.18、3或1【分析】由四邊形ABCD是平行四邊形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可證得FB=FD,求出AD的長,得出CE的長,設當點P運動t秒時,點P、Q、E、F為頂點的四邊形是平行四邊形,根據(jù)題意列出方程并解方程即可得出結果.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵點E是BC的中點,∴CE=BC=AD=9cm,要使點P、Q、E、F為頂點的四邊形是平行四邊形,則PF=EQ即可,設當點P運動t秒時,點P、Q、E、F為頂點的四邊形是平行四邊形,根據(jù)題意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案為3或1.【點睛】本題考查了平行四邊形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)以及一元一次方程的應用等知識.注意掌握分類討論思想的應用是解此題的關鍵.三、解答題(共78分)19、(1)(2)水流噴出的最大高度為2米【分析】(1)建立平面直角坐標系,待定系數(shù)法解題,(2)求出頂點坐標即可.【詳解】解:(1)由題意可得,拋物線經(jīng)過(0,1.5)和(3,0),解得:a=-0.5,c=1.5,即函數(shù)表達式為y=.(2)解:∴當x=1時,y取得最大值,此時y=2.答:水流噴出的最大高度為2米.【點睛】本題考查了二次函數(shù)的解析式的求法,頂點坐標的應用,中等難度,建立平面直角坐標系是解題關鍵.20、每件童裝應降價元.【分析】設每件服裝應降價x元,根據(jù)題意列出方程,即每件服裝的利潤×銷售量=總盈利,再求解,把不符合題意的舍去.【詳解】設每件服裝應降價x元,由題意,得,解得,,為使顧客得到較多的實惠,應取x=1.故每件服裝應降價1元.21、(1)(2)【分析】(1)根據(jù)從A、D、E、F四個點中任意取一點,一共有4種可能,只有選取D點時,所畫三角形是等腰三角形,即可得出答案;(2)利用樹狀圖得出從A、D、E、F四個點中先后任意取兩個不同的點,一共有12種可能,進而得出以點A、E、B、C為頂點及以D、F、B、C為頂點所畫的四邊形是平行四邊形,即可求出概率.【詳解】解:(1)根據(jù)從A、D、E、F四個點中任意取一點,一共有4種可能,只有選取D點時,所畫三角形是等腰三角形,所畫三角形是等腰三角形的概率P=;故答案為(2)用“樹狀圖”或利用表格列出所有可能的結果:∵以點A、E、B、C為頂點及以D、F、B、C為頂點所畫的四邊形是平行四邊形,∴所畫的四邊形是平行四邊形的概率P==.考點:列表法與樹狀圖法;等腰三角形的判定;平行四邊形的判定.22、(1)y=2x2﹣8x+6;(2)不存在一點P,使△ABC的面積等于14;(3)點P的坐標為(3,5)或(,).【分析】(1)由B(4,m)在直線y=x+2上,可求得m的值,已知拋物線圖象上的A、B兩點坐標,可將其代入拋物線的解析式中,通過待定系數(shù)法即可求得解析式;(2)設出P點橫坐標,根據(jù)直線AB和拋物線的解析式表示出P、C的縱坐標,進而得到關于PC的長度與P點橫坐標的函數(shù)關系式,根據(jù)三角形面積公式列出方程,即可解答;(3)根據(jù)△PAC與△PDE相似,可得△PAC為直角三角形,根據(jù)直角頂點的不同,有3種情形,分類討論,即可分別求解.【詳解】(1)∵B(4,m)在直線y=x+2上,∴m=4+2=6,∴B(4,6),∵A(,),B(4,6)在拋物線y=ax2+bx+6上,∴,解得,∴拋物線的解析式為y=2x2﹣8x+6;(2)設動點P的坐標為(n,n+2),則C點的坐標為(n,2n2﹣8n+6),∵點P是線段AB上異于A、B的動點,∴,∴PC=(n+2)﹣(2n2﹣8n+6)=﹣2n2+9n﹣4,假設△ABC的面積等于14,則PC?(xB﹣xA)=14,∴,即:2n2﹣9n+12=0,∵△=(-9)2﹣4×2×12<0,∴一元二次方程無實數(shù)解,∴假設不成立,即:不存在一點P,使△ABC的面積等于14;(3)∵PC⊥x軸,∴∠PDE=90°,∵△PAC與△PDE相似,∴△PAC也是直角三角形,①當P為直角頂點,則∠APC=90°由題意易知,PC∥y軸,∠APC=45°,因此這種情形不存在;②若點A為直角頂點,則∠PAC=90°.如圖1,過點A(,)作AN⊥x軸于點N,則ON=,AN=.過點A作AM⊥直線AB,交x軸于點M,則由題意易知,△AMN為等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).設直線AM的解析式為:y=kx+b,則:,解得,∴直線AM的解析式為:y=﹣x+3①又拋物線的解析式為:y=2x2﹣8x+6②聯(lián)立①②式,解得:或(與點A重合,舍去),∴C(3,0),即點C、M點重合.當x=3時,y=x+2=5,∴P1(3,5);③若點C為直角頂點,則∠ACP=90°.∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴拋物線的對稱軸為直線x=2.如圖2,作點A(,)關于對稱軸x=2的對稱點C,則點C在拋物線上,且C(,).當x=時,y=x+2=.∴P2(,).∵點P1(3,5)、P2(,)均在線段AB上,∴綜上所述,若△PAC與△PDE相似,點P的坐標為(3,5)或(,).【點睛】本題主要考查二次函數(shù)的圖象和性質(zhì)與三角形的綜合問題,掌握二次函數(shù)的待定系數(shù)法,平面直角坐標系中,三角形的面積公式,相似三角形的判定和性質(zhì)定理,以及分類討論和數(shù)形結合思想,是解題的關鍵.23、(1);(2)【分析】(1)由概率公式即可得出結果;(2)由樹狀圖得出第一次得到的數(shù)與第二次得到的數(shù)的積為正數(shù)的情況,再利用概率公式求解即可求得答案.【詳解】解:(1)取一次取到負數(shù)的概率為;(2)畫樹狀圖如下:共有9種等可能的結果,“第一次得到的數(shù)與第二次得到的數(shù)的積為正數(shù)”的有5種情況,∴“第一次得到的數(shù)與第二次得到的數(shù)的積為正數(shù)”的概率為.【點睛】此題考查的是用列表法或樹狀圖法求概率.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.24、π.【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)得到△AED的面積=△ABC的面積,得到陰影部分的面積=扇形ADB的面積,根據(jù)扇形面積公式計算即可.【詳解】∵將△ABC繞點A逆時針旋轉(zhuǎn)30°后得到△ADE,∴根據(jù)旋轉(zhuǎn)可知:∠DAB=30°,△AED≌△ACB,∴S△AED=S△ACB,∴圖中陰影部分的面積S=S扇形DAB+S△AED﹣S△ACB=S扇形DABπ.【點睛】本題考查的是扇形面積的計算、旋轉(zhuǎn)的性質(zhì),根據(jù)圖形得到陰影部分的面積=扇形AD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版專業(yè)礦山工程總承包合同一
- 2024年度新型地下空間租賃合同范本3篇
- 瓦斯災害防治課程設計
- 睡眠監(jiān)測課程設計
- 2024年版城市綠化工程用玻璃采購合同
- 2024年股權轉(zhuǎn)讓合同股權轉(zhuǎn)讓條件與受讓義務
- 2024年精密儀器管材供應合同
- 2024年稀土高速工具鋼項目成效分析報告
- 算法課程設計報告讀數(shù)
- 2024年漁業(yè)養(yǎng)殖合同范本
- (2024年)電擊傷的急救與護理ppt課件完整版
- 國開《當代中國政治制度》機考復習題匯總
- (2024年)數(shù)據(jù)分析PPT圖片
- (2024年)配電網(wǎng)自動化課件05
- 中等職業(yè)學校班主任能力比賽班級建設方案
- 中醫(yī)院醫(yī)院設備科工作總結
- 浙江省臺州市椒江區(qū)2023-2024學年四年級上學期期末科學試卷
- 網(wǎng)絡傳播概論(第5版) 課件 第一章 網(wǎng)絡媒介的演變
- 無人機消防安全指南
- 2023北京西城六年級(上)期末英語試卷含答案
- 京東五力模型分析報告
評論
0/150
提交評論