2023屆成都十考試題猜想數(shù)學試卷含解析及點睛_第1頁
2023屆成都十考試題猜想數(shù)學試卷含解析及點睛_第2頁
2023屆成都十考試題猜想數(shù)學試卷含解析及點睛_第3頁
2023屆成都十考試題猜想數(shù)學試卷含解析及點睛_第4頁
2023屆成都十考試題猜想數(shù)學試卷含解析及點睛_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023中考數(shù)學模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.甲、乙兩人分別以4m/s和5m/s的速度,同時從100m直線型跑道的起點向同一方向起跑,設(shè)乙的奔跑時間為t(s),甲乙兩人的距離為S(m),則S關(guān)于t的函數(shù)圖象為()A. B. C. D.2.下列式子一定成立的是()A.2a+3a=6a B.x8÷x2=x4C. D.(﹣a﹣2)3=﹣3.若,則3(x-2)2A.﹣6B.6C.18D.304.若一個凸多邊形的內(nèi)角和為720°,則這個多邊形的邊數(shù)為A.4 B.5 C.6 D.75.如圖,C,B是線段AD上的兩點,若,,則AC與CD的關(guān)系為()A. B. C. D.不能確定6.初三(1)班的座位表如圖所示,如果如圖所示建立平面直角坐標系,并且“過道也占一個位置”,例如小王所對應(yīng)的坐標為(3,2),小芳的為(5,1),小明的為(10,2),那么小李所對應(yīng)的坐標是()A.(6,3) B.(6,4) C.(7,4) D.(8,4)7.已知,如圖,AB//CD,∠DCF=100°,則∠AEF的度數(shù)為()A.120° B.110° C.100° D.80°8.在下列實數(shù)中,﹣3,,0,2,﹣1中,絕對值最小的數(shù)是()A.﹣3 B.0 C. D.﹣19.一個幾何體的三視圖如圖所示,則該幾何體的形狀可能是()A.B.C.D.10.已知一組數(shù)據(jù):12,5,9,5,14,下列說法不正確的是()A.平均數(shù)是9 B.中位數(shù)是9 C.眾數(shù)是5 D.極差是5二、填空題(本大題共6個小題,每小題3分,共18分)11.若正多邊形的一個內(nèi)角等于120°,則這個正多邊形的邊數(shù)是_____.12.數(shù)據(jù):2,5,4,2,2的中位數(shù)是_____,眾數(shù)是_____,方差是_____.13.在平面直角坐標系中,將點A(﹣3,2)向右平移3個單位長度,再向下平移2個單位長度,那么平移后對應(yīng)的點A′的坐標是_____.14.分解因式:4a3b﹣ab=_____.15.對于實數(shù)a,b,定義運算“*”:a*b=,例如:因為4>2,所以4*2=42﹣4×2=8,則(﹣3)*(﹣2)=___________.16.分解因式:a2b?8ab+16b=_____.三、解答題(共8題,共72分)17.(8分)如圖1,△ABC與△CDE都是等腰直角三角形,直角邊AC,CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE,BD,PM,PN,MN.(1)觀察猜想:圖1中,PM與PN的數(shù)量關(guān)系是,位置關(guān)系是.(2)探究證明:將圖1中的△CDE繞著點C順時針旋轉(zhuǎn)α(0°<α<90°),得到圖2,AE與MP、BD分別交于點G、H,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△CDE繞點C任意旋轉(zhuǎn),若AC=4,CD=2,請直接寫出△PMN面積的最大值.18.(8分)為了解某校九年級男生的體能情況,體育老師隨機抽取部分男生進行引體向上測試,并對成績進行了統(tǒng)計,繪制出如下的統(tǒng)計圖①和圖②,請跟進相關(guān)信息,解答下列問題:(1)本次抽測的男生人數(shù)為,圖①中m的值為;(2)求本次抽測的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(3)若規(guī)定引體向上5次以上(含5次)為體能達標,根據(jù)樣本數(shù)據(jù),估計該校350名九年級男生中有多少人體能達標.19.(8分)隨著“互聯(lián)網(wǎng)+”時代的到來,一種新型打車方式受到大眾歡迎,該打車方式的總費用由里程費和耗時費組成,其中里程費按x元/公里計算,耗時費按y元/分鐘計算(總費用不足9元按9元計價).小明、小剛兩人用該打車方式出行,按上述計價規(guī)則,其打車總費用、行駛里程數(shù)與打車時間如表:時間(分鐘)里程數(shù)(公里)車費(元)小明8812小剛121016(1)求x,y的值;(2)如果小華也用該打車方式,打車行駛了11公里,用了14分鐘,那么小華的打車總費用為多少?20.(8分)如圖,已知?ABCD.作∠B的平分線交AD于E點。(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);若?ABCD的周長為10,CD=2,求DE的長。21.(8分)解不等式組:.22.(10分)如圖,已知拋物線(>0)與軸交于A,B兩點(A點在B點的左邊),與軸交于點C。(1)如圖1,若△ABC為直角三角形,求的值;(2)如圖1,在(1)的條件下,點P在拋物線上,點Q在拋物線的對稱軸上,若以BC為邊,以點B,C,P,Q為頂點的四邊形是平行四邊形,求P點的坐標;(3)如圖2,過點A作直線BC的平行線交拋物線于另一點D,交軸交于點E,若AE:ED=1:4,求的值.23.(12分)已知點O是正方形ABCD對角線BD的中點.(1)如圖1,若點E是OD的中點,點F是AB上一點,且使得∠CEF=90°,過點E作ME∥AD,交AB于點M,交CD于點N.①∠AEM=∠FEM;②點F是AB的中點;(2)如圖2,若點E是OD上一點,點F是AB上一點,且使,請判斷△EFC的形狀,并說明理由;(3)如圖3,若E是OD上的動點(不與O,D重合),連接CE,過E點作EF⊥CE,交AB于點F,當時,請猜想的值(請直接寫出結(jié)論).24.先化簡,再求值:,且x為滿足﹣3<x<2的整數(shù).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

勻速直線運動的路程s與運動時間t成正比,s-t圖象是一條傾斜的直線解答.【詳解】∵甲、乙兩人分別以4m/s和5m/s的速度,∴兩人的相對速度為1m/s,設(shè)乙的奔跑時間為t(s),所需時間為20s,兩人距離20s×1m/s=20m,故選B.【點睛】此題考查函數(shù)圖象問題,關(guān)鍵是根據(jù)勻速直線運動的路程s與運動時間t成正比解答.2、D【解析】

根據(jù)合并同類項、同底數(shù)冪的除法法則、分數(shù)指數(shù)運算法則、冪的乘方法則進行計算即可.【詳解】解:A:2a+3a=(2+3)a=5a,故A錯誤;B:x8÷x2=x8-2=x6,故B錯誤;C:=,故C錯誤;D:(-a-2)3=-a-6=-,故D正確.故選D.【點睛】本題考查了合并同類項、同底數(shù)冪的除法法則、分數(shù)指數(shù)運算法則、冪的乘方法則.其中指數(shù)為分數(shù)的情況在初中階段很少出現(xiàn).3、B【解析】試題分析:∵,即x2+4x=4,∴原式=3(x=-3x2-12x+18考點:整式的混合運算—化簡求值;整體思想;條件求值.4、C【解析】

設(shè)這個多邊形的邊數(shù)為n,根據(jù)多邊形的內(nèi)角和定理得到(n﹣2)×180°=720°,然后解方程即可.【詳解】設(shè)這個多邊形的邊數(shù)為n,由多邊形的內(nèi)角和是720°,根據(jù)多邊形的內(nèi)角和定理得(n-2)180°=720°.解得n=6.故選C.【點睛】本題主要考查多邊形的內(nèi)角和定理,熟練掌握多邊形的內(nèi)角和定理是解答本題的關(guān)鍵.5、B【解析】

由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【詳解】∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC.故選B.【點睛】本題考查了線段長短的比較,在不同的情況下靈活選用它的不同表示方法,有利于解題的簡潔性.同時,靈活運用線段的和、差、倍轉(zhuǎn)化線段之間的數(shù)量關(guān)系是十分關(guān)鍵的一點.6、C【解析】

根據(jù)題意知小李所對應(yīng)的坐標是(7,4).故選C.7、D【解析】

先利用鄰補角得到∠DCE=80°,然后根據(jù)平行線的性質(zhì)求解.【詳解】∵∠DCF=100°,∴∠DCE=80°,∵AB∥CD,∴∠AEF=∠DCE=80°.故選D.【點睛】本題考查了平行線性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等.8、B【解析】|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,∵3>2>>1>0,∴絕對值最小的數(shù)是0,故選:B.9、D【解析】試題分析:由主視圖和左視圖可得此幾何體上面為臺,下面為柱體,由俯視圖為圓環(huán)可得幾何體為.故選D.考點:由三視圖判斷幾何體.視頻10、D【解析】分別計算該組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)及極差后即可得到正確的答案平均數(shù)為(12+5+9+5+14)÷5=9,故選項A正確;重新排列為5,5,9,12,14,∴中位數(shù)為9,故選項B正確;5出現(xiàn)了2次,最多,∴眾數(shù)是5,故選項C正確;極差為:14﹣5=9,故選項D錯誤.故選D二、填空題(本大題共6個小題,每小題3分,共18分)11、6【解析】試題分析:設(shè)所求正n邊形邊數(shù)為n,則120°n=(n﹣2)?180°,解得n=6;考點:多邊形內(nèi)角與外角.12、221.1.【解析】

先將這組數(shù)據(jù)從小到大排列,再找出最中間的數(shù),即可得出中位數(shù);找出這組數(shù)據(jù)中最多的數(shù)則是眾數(shù);先求出這組數(shù)據(jù)的平均數(shù),再根據(jù)方差公式S2=[(x1-)2+(x2-)2+…+(xn-)2]進行計算即可.【詳解】解:把這組數(shù)據(jù)從小到大排列為:2,2,2,4,5,最中間的數(shù)是2,則中位數(shù)是2;眾數(shù)為2;∵這組數(shù)據(jù)的平均數(shù)是(2+2+2+4+5)÷5=3,∴方差是:[(2?3)2+(2?3)2+(2?3)2+(4?3)2+(5?3)2]=1.1.故答案為2,2,1.1.【點睛】本題考查了中位數(shù)、眾數(shù)與方差的定義,解題的關(guān)鍵是熟練的掌握中位數(shù)、眾數(shù)與方差的定義.13、(0,0)【解析】

根據(jù)坐標的平移規(guī)律解答即可.【詳解】將點A(-3,2)向右平移3個單位長度,再向下平移2個單位長度,那么平移后對應(yīng)的點A′的坐標是(-3+3,2-2),即(0,0),故答案為(0,0).【點睛】此題主要考查坐標與圖形變化-平移.平移中點的變化規(guī)律是:橫坐標右移加,左移減;縱坐標上移加,下移減.14、ab(2a+1)(2a-1)【解析】

先提取公因式再用公式法進行因式分解即可.【詳解】4a3b-ab=ab(4a2-1)=ab(2a+1)(2a-1)【點睛】此題主要考查因式分解單項式,解題的關(guān)鍵是熟知因式分解的方法.15、-1.【解析】解:∵-3<-2,∴(-3)*(-2)=(-3)-(-2)=-1.故答案為-1.16、b(a﹣4)1【解析】

先提公因式,再用完全平方公式進行因式分解.【詳解】解:a1b-8ab+16b=b(a1-8a+16)=b(a-4)1.【點睛】本題考查了提公因式與公式法的綜合運用,熟練運用公式法分解因式是本題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)PM=PN,PM⊥PN(2)等腰直角三角形,理由見解析(3)【解析】

(1)由等腰直角三角形的性質(zhì)易證△ACE≌△BCD,由此可得AE=BD,再根據(jù)三角形中位線定理即可得到PM=PN,由平行線的性質(zhì)可得PM⊥PN;(2)(1)中的結(jié)論仍舊成立,由(1)中的證明思路即可證明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出當BD的值最大時,PM的值最大,△PMN的面積最大,推出當B、C、D共線時,BD的最大值=BC+CD=6,由此即可解決問題;【詳解】解:(1)PM=PN,PM⊥PN,理由如下:延長AE交BD于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵點M、N分別是斜邊AB、DE的中點,點P為AD的中點,∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,故答案是:PM=PN,PM⊥PN;(2)如圖②中,設(shè)AE交BC于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°,∴∠ACB+∠BCE=∠ECD+∠BCE,∴∠ACE=∠BCD,∴△ACE≌△BCD,∴AE=BD,∠CAE=∠CBD,又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°,∵點P、M、N分別為AD、AB、DE的中點,∴PM=BD,PM∥BD,PN=AE,PN∥AE,∴PM=PN,∴∠MGE+∠BHA=180°,∴∠MGE=90°,∴∠MPN=90°,∴PM⊥PN;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴當BD的值最大時,PM的值最大,△PMN的面積最大,∴當B、C、D共線時,BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面積的最大值=×3×3=.【點睛】本題考查的是幾何變換綜合題,熟知等腰直角三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、三角形中位線定理的運用,解題的關(guān)鍵是正確尋找全等三角形解決問題,學會利用三角形的三邊關(guān)系解決最值問題,屬于中考壓軸題.18、(1)50、1;(2)平均數(shù)為5.16次,眾數(shù)為5次,中位數(shù)為5次;(3)估計該校350名九年級男生中有2人體能達標.【解析】分析:(Ⅰ)根據(jù)4次的人數(shù)及其百分比可得總?cè)藬?shù),用6次的人數(shù)除以總?cè)藬?shù)求得m即可;(Ⅱ)根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的定義求解可得;(Ⅲ)總?cè)藬?shù)乘以樣本中5、6、7次人數(shù)之和占被調(diào)查人數(shù)的比例可得.詳解:(Ⅰ)本次抽測的男生人數(shù)為10÷20%=50,m%=×100%=1%,所以m=1.故答案為50、1;(Ⅱ)平均數(shù)為=5.16次,眾數(shù)為5次,中位數(shù)為=5次;(Ⅲ)×350=2.答:估計該校350名九年級男生中有2人體能達標.點睛:本題考查了條形統(tǒng)計圖,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).19、(1)x=1,y=;(2)小華的打車總費用為18元.【解析】試題分析:(1)根據(jù)表格內(nèi)容列出關(guān)于x、y的方程組,并解方程組.

(2)根據(jù)里程數(shù)和時間來計算總費用.試題解析:(1)由題意得,解得;(2)小華的里程數(shù)是11km,時間為14min.則總費用是:11x+14y=11+7=18(元).答:總費用是18元.20、(1)作圖見解析;(2)1【解析】

(1)以點B為圓心,任意長為半徑畫弧分別與AB、BC相交。然后再分別以交點為圓心,以交點間的距離為半徑分別畫弧,兩弧相交于一點,畫出射線BE即得.(2)根據(jù)平行四邊形的對邊相等,可得AB+AD=5,由兩直線平行內(nèi)錯角相等可得∠AEB=∠EBC,利用角平分線即得∠ABE=∠EBC,即證∠AEB=∠ABE.根據(jù)等角對等邊可得AB=AE=2,從而求出ED的長.【詳解】(1)解:如圖所示:(2)解:∵平行四邊形ABCD的周長為10∴AB+AD=5∵AD//BC∴∠AEB=∠EBC又∵BE平分∠ABC∴∠ABE=∠EBC∴∠AEB=∠ABE∴AB=AE=2∴ED=AD-AE=3-2=1【點睛】此題考查作圖-基本作圖和平行四邊形的性質(zhì),解題關(guān)鍵在于掌握作圖法則21、﹣4≤x<1【解析】

先求出各不等式的【詳解】解不等式x﹣1<2,得:x<1,解不等式2x+1≥x﹣1,得:x≥﹣4,則不等式組的解集為﹣4≤x<1.【點睛】考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎(chǔ),熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關(guān)鍵.22、(1);(2)點P的坐標為;(3).【解析】

(1)利用三角形相似可求AO?OB,再由一元二次方程根與系數(shù)關(guān)系求AO?OB構(gòu)造方程求n;(2)求出B、C坐標,設(shè)出點Q坐標,利用平行四邊形對角線互相平分性質(zhì),分類討論點P坐標,分別代入拋物線解析式,求出Q點坐標;(3)設(shè)出點D坐標(a,b),利用相似表示OA,再由一元二次方程根與系數(shù)關(guān)系表示OB,得到點B坐標,進而找到b與a關(guān)系,代入拋物線求a、n即可.【詳解】(1)若△ABC為直角三角形∴△AOC∽△COB∴OC2=AO?OB當y=0時,0=x2-x-n由一元二次方程根與系數(shù)關(guān)系-OA?OB=OC2n2==?2n解得n=0(舍去)或n=2∴拋物線解析式為y=;(2)由(1)當=0時解得x1=-1,x2=4∴OA=1,OB=4∴B(4,0),C(0,-2)∵拋物線對稱軸為直線x=-=?∴設(shè)點Q坐標為(,b)由平行四邊形性質(zhì)可知當BQ、CP為平行四邊形對角線時,點P坐標為(,b+2)代入y=x2-x-2解得b=,則P點坐標為(,)當CQ、PB為為平行四邊形對角線時,點P坐標為(-,b-2)代入y=x2-x-2解得b=,則P坐標為(-,)綜上點P坐標為(,),(-,);(3)設(shè)點D坐標為(a,b)∵AE:ED=1:4則OE=b,OA=a∵AD∥AB∴△AEO∽△BCO∵OC=n∴∴OB=由一元二次方程根與系數(shù)關(guān)系得,∴b=a2將點A(-a,0),D(a,a2)代入y=x2-x-n解得a=6或a=0(舍去)則n=.【點睛】本題是代數(shù)幾何綜合題,考查了二次函數(shù)圖象性質(zhì)、一元二次方程根與系數(shù)關(guān)系、三角形相似以及平行四邊形的性質(zhì),解答關(guān)鍵是綜合運用數(shù)形結(jié)合分類討論思想.23、(1)①證明見解析;②證明見解析;(2)△EFC是等腰直角三角形.理由見解析;(3).【解析】試題分析:(1)①過點E作EG⊥BC,垂足為G,根據(jù)ASA證明△CEG≌△FEM得CE=FE,再根據(jù)SAS證明△ABE≌△CBE得AE=CE,在△AEF中根據(jù)等腰三角形“三線合一”即可證明結(jié)論成立;②設(shè)AM=x,則AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,從而AF=AB,得到點F是AB的中點.;(2)過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AME≌△FME(SAS),從而可得△EFC是等腰直角三角形.(3)方法同第(2)小題.過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AEM≌△FEM(ASA),得AM=FM,設(shè)AM=x,則AF=2x,DN=x,DE=x,BD=x,AB=x,=2x:x=.試題解析:(1)①過點E作EG⊥BC,垂足為G,則四邊形MBGE為正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四邊形ABCD為正方形,∴AB=CB,∠ABE=∠C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論