版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.2012﹣2013NBA整個常規(guī)賽季中,科比罰球投籃的命中率大約是83.3%,下列說法錯誤的是A.科比罰球投籃2次,一定全部命中B.科比罰球投籃2次,不一定全部命中C.科比罰球投籃1次,命中的可能性較大D.科比罰球投籃1次,不命中的可能性較小2.已知M=9x2-4x+3,N=5x2+4x-2,則M與N的大小關系是()A.M>N B.M=N C.M<N D.不能確定3.如圖,把一個直角三角尺的直角頂點放在直尺的一邊上,若∠1=50°,則∠2=()A.20° B.30° C.40° D.50°4.互聯(lián)網(wǎng)“微商”經(jīng)營已成為大眾創(chuàng)業(yè)新途徑,某微信平臺上一件商品標價為200元,按標價的五折銷售,仍可獲利20元,則這件商品的進價為()A.120元 B.100元 C.80元 D.60元5.如圖1,E為矩形ABCD邊AD上一點,點P從點B沿折線BE﹣ED﹣DC運動到點C時停止,點Q從點B沿BC運動到點C時停止,它們運動的速度都是1cm/s.若P,Q同時開始運動,設運動時間為t(s),△BPQ的面積為y(cm2).已知y與t的函數(shù)圖象如圖2,則下列結論錯誤的是()A.AE=6cm B.C.當0<t≤10時, D.當t=12s時,△PBQ是等腰三角形6.2018年春運,全國旅客發(fā)送量達29.8億人次,用科學記數(shù)法表示29.8億,正確的是()A.29.8×109 B.2.98×109 C.2.98×1010 D.0.298×10107.在反比例函數(shù)的圖象的每一個分支上,y都隨x的增大而減小,則k的取值范圍是()A.k>1 B.k>0 C.k≥1 D.k<18.如圖,O為原點,點A的坐標為(3,0),點B的坐標為(0,4),⊙D過A、B、O三點,點C為上一點(不與O、A兩點重合),則cosC的值為()A. B. C. D.9.定義運算:a?b=2ab.若a,b是方程x2+x-m=0(m>0)的兩個根,則(a+1)?a-(b+1)?b的值為()A.0B.2C.4mD.-4m10.如圖,AB∥CD,點E在線段BC上,CD=CE,若∠ABC=30°,則∠D為()A.85° B.75° C.60° D.30°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,圓錐底面圓心為O,半徑OA=1,頂點為P,將圓錐置于平面上,若保持頂點P位置不變,將圓錐順時針滾動三周后點A恰好回到原處,則圓錐的高OP=_____.12.若不等式組1-x≤2,x>m有解,則13.如圖,從甲樓底部A處測得乙樓頂部C處的仰角是30°,從甲樓頂部B處測得乙樓底部D處的俯角是45°,已知甲樓的高AB是120m,則乙樓的高CD是_____m(結果保留根號)14.如圖,在中,,,,,,點在上,交于點,交于點,當時,________.15.如圖,在△ABC中,AD、BE分別是邊BC、AC上的中線,AB=AC=5,cos∠C=,那么GE=_______.16.若m、n是方程x2+2018x﹣1=0的兩個根,則m2n+mn2﹣mn=_________.三、解答題(共8題,共72分)17.(8分)如圖,已知的直徑,是的弦,過點作的切線交的延長線于點,過點作,垂足為,與交于點,設,的度數(shù)分別是,,且.(1)用含的代數(shù)式表示;(2)連結交于點,若,求的長.18.(8分)如圖,在銳角△ABC中,小明進行了如下的尺規(guī)作圖:①分別以點A、B為圓心,以大于12AB的長為半徑作弧,兩弧分別相交于點P、Q②作直線PQ分別交邊AB、BC于點E、D.小明所求作的直線DE是線段AB的;聯(lián)結AD,AD=7,sin∠DAC=17,BC=9,求AC19.(8分)李寧準備完成題目;解二元一次方程組,發(fā)現(xiàn)系數(shù)“□”印刷不清楚.他把“□”猜成3,請你解二元一次方程組;張老師說:“你猜錯了”,我看到該題標準答案的結果x、y是一對相反數(shù),通過計算說明原題中“□”是幾?20.(8分)已知拋物線y=ax2+(3b+1)x+b﹣3(a>0),若存在實數(shù)m,使得點P(m,m)在該拋物線上,我們稱點P(m,m)是這個拋物線上的一個“和諧點”.(1)當a=2,b=1時,求該拋物線的“和諧點”;(2)若對于任意實數(shù)b,拋物線上恒有兩個不同的“和諧點”A、B.①求實數(shù)a的取值范圍;②若點A,B關于直線y=﹣x﹣(+1)對稱,求實數(shù)b的最小值.21.(8分)如圖,菱形ABCD中,已知∠BAD=120°,∠EGF=60°,∠EGF的頂點G在菱形對角線AC上運動,角的兩邊分別交邊BC、CD于E、F.(1)如圖甲,當頂點G運動到與點A重合時,求證:EC+CF=BC;(2)知識探究:①如圖乙,當頂點G運動到AC的中點時,請直接寫出線段EC、CF與BC的數(shù)量關系(不需要寫出證明過程);②如圖丙,在頂點G運動的過程中,若,探究線段EC、CF與BC的數(shù)量關系;(3)問題解決:如圖丙,已知菱形的邊長為8,BG=7,CF=,當>2時,求EC的長度.22.(10分)如圖所示,在中,,(1)用尺規(guī)在邊BC上求作一點P,使;(不寫作法,保留作圖痕跡)(2)連接AP當為多少度時,AP平分.23.(12分)八年級(1)班學生在完成課題學習“體質健康測試中的數(shù)據(jù)分析”后,利用課外活動時間積極參加體育鍛煉,每位同學從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓練,訓練后都進行了測試.現(xiàn)將項目選擇情況及訓練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.請你根據(jù)上面提供的信息回答下列問題:扇形圖中跳繩部分的扇形圓心角為度,該班共有學生人,訓練后籃球定時定點投籃平均每個人的進球數(shù)是.老師決定從選擇鉛球訓練的3名男生和1名女生中任選兩名學生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.24.如圖,在建筑物M的頂端A處測得大樓N頂端B點的仰角α=45°,同時測得大樓底端A點的俯角為β=30°.已知建筑物M的高CD=20米,求樓高AB為多少米?(≈1.732,結果精確到0.1米)
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題分析:根據(jù)概率的意義,概率是反映事件發(fā)生機會的大小的概念,只是表示發(fā)生的機會的大小,機會大也不一定發(fā)生。因此。A、科比罰球投籃2次,不一定全部命中,故本選項正確;B、科比罰球投籃2次,不一定全部命中,正確,故本選項錯誤;C、∵科比罰球投籃的命中率大約是83.3%,∴科比罰球投籃1次,命中的可能性較大,正確,故本選項錯誤;D、科比罰球投籃1次,不命中的可能性較小,正確,故本選項錯誤。故選A。2、A【解析】
若比較M,N的大小關系,只需計算M-N的值即可.【詳解】解:∵M=9x2-4x+3,N=5x2+4x-2,∴M-N=(9x2-4x+3)-(5x2+4x-2)=4(x-1)2+1>0,∴M>N.故選A.【點睛】本題的主要考查了比較代數(shù)式的大小,可以讓兩者相減再分析情況.3、C【解析】
由兩直線平行,同位角相等,可求得∠3的度數(shù),然后求得∠2的度數(shù).【詳解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°?50°=40°.故選C.【點睛】本題主要考查平行線的性質,熟悉掌握性質是關鍵.4、C【解析】
解:設該商品的進價為x元/件,依題意得:(x+20)÷=200,解得:x=1.∴該商品的進價為1元/件.故選C.5、D【解析】(1)結論A正確,理由如下:解析函數(shù)圖象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm.(2)結論B正確,理由如下:如圖,連接EC,過點E作EF⊥BC于點F,由函數(shù)圖象可知,BC=BE=10cm,,∴EF=1.∴.(3)結論C正確,理由如下:如圖,過點P作PG⊥BQ于點G,∵BQ=BP=t,∴.(4)結論D錯誤,理由如下:當t=12s時,點Q與點C重合,點P運動到ED的中點,設為N,如圖,連接NB,NC.此時AN=1,ND=2,由勾股定理求得:NB=,NC=.∵BC=10,∴△BCN不是等腰三角形,即此時△PBQ不是等腰三角形.故選D.6、B【解析】
根據(jù)科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),且為這個數(shù)的整數(shù)位數(shù)減1,由此即可解答.【詳解】29.8億用科學記數(shù)法表示為:29.8億=2980000000=2.98×1.故選B.【點睛】本題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.7、A【解析】
根據(jù)反比例函數(shù)的性質,當反比例函數(shù)的系數(shù)大于0時,在每一支曲線上,y都隨x的增大而減小,可得k﹣1>0,解可得k的取值范圍.【詳解】解:根據(jù)題意,在反比例函數(shù)圖象的每一支曲線上,y都隨x的增大而減小,即可得k﹣1>0,解得k>1.故選A.【點評】本題考查了反比例函數(shù)的性質:①當k>0時,圖象分別位于第一、三象限;當k<0時,圖象分別位于第二、四象限.②當k>0時,在同一個象限內(nèi),y隨x的增大而減?。划攌<0時,在同一個象限,y隨x的增大而增大.8、D【解析】
如圖,連接AB,由圓周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故選D.9、A【解析】【分析】由根與系數(shù)的關系可得a+b=-1然后根據(jù)所給的新定義運算a?b=2ab對式子(a+1)?a-(b+1)?b用新定義運算展開整理后代入進行求解即可.【詳解】∵a,b是方程x2+x-m=0(m>0)的兩個根,∴a+b=-1,∵定義運算:a?b=2ab,∴(a+1)?a-(b+1)?b=2a(a+1)-2b(b+1)=2a2+2a-2b2-2b=2(a+b)(a-b)+2(a-b)=-2(a-b)+2(a-b)=0,故選A.【點睛】本題考查了一元二次方程根與系數(shù)的關系,新定義運算等,理解并能運用新定義運算是解題的關鍵.10、B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根據(jù)三角形內(nèi)角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,從而求出∠D.詳解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故選B.點睛:此題考查的是平行線的性質及三角形內(nèi)角和定理,解題的關鍵是先根據(jù)平行線的性質求出∠C,再由CD=CE得出∠D=∠CED,由三角形內(nèi)角和定理求出∠D.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】
先利用圓的周長公式計算出PA的長,然后利用勾股定理計算PO的長.【詳解】解:根據(jù)題意得2π×PA=3×2π×1,所以PA=3,所以圓錐的高OP=PA故答案為22【點睛】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.12、m<2【解析】分析:解出不等式組的解集,然后根據(jù)解集的取值范圍來確定m的取值范圍.解答:解:由1-x≤2得x≥-1又∵x>m根據(jù)同大取大的原則可知:若不等式組的解集為x≥-1時,則m≤-1若不等式組的解集為x≥m時,則m≥-1.故填m≤-1或m≥-1.點評:本題是已知不等式組的解集,求不等式中另一未知數(shù)的問題.可以先將另一未知數(shù)當作已知處理,求出解集再利用不等式組的解集的確定原則來確定未知數(shù)的取值范圍.13、40【解析】
利用等腰直角三角形的性質得出AB=AD,再利用銳角三角函數(shù)關系即可得出答案.【詳解】解:由題意可得:∠BDA=45°,則AB=AD=120m,又∵∠CAD=30°,∴在Rt△ADC中,tan∠CDA=tan30°=,解得:CD=40(m),故答案為40.【點睛】此題主要考查了解直角三角形的應用,正確得出tan∠CDA=tan30°=是解題關鍵.14、1【解析】
如圖作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=1:4:5,設PQ=4x,則AQ=1x,AP=5x,BQ=2x,可得2x+1x=1,求出x即可解決問題.【詳解】如圖,作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四邊形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ.∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=1:4:5,設PQ=4x,則AQ=1x,AP=5x,BQ=2x,∴2x+1x=1,∴x=,∴AP=5x=1.故答案為:1.【點睛】本題考查了相似三角形的判定和性質、勾股定理、矩形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造相似三角形解決問題,屬于中考常考題型.15、【解析】
過點E作EF⊥BC交BC于點F,分別求得AD=3,BD=CD=4,EF=,DF=2,BF=6,再結合△BGD∽△BEF即可.【詳解】過點E作EF⊥BC交BC于點F.∵AB=AC,AD為BC的中線∴AD⊥BC∴EF為△ADC的中位線.又∵cos∠C=,AB=AC=5,∴AD=3,BD=CD=4,EF=,DF=2∴BF=6∴在Rt△BEF中BE==,又∵△BGD∽△BEF∴,即BG=.GE=BE-BG=故答案為.【點睛】本題考查的知識點是三角形的相似,解題的關鍵是熟練的掌握三角形的相似.16、1【解析】
根據(jù)根與系數(shù)的關系得到m+n=﹣2018,mn=﹣1,把m2n+mm2﹣mn分解因式得到mn(m+n﹣1),然后利用整體代入的方法計算.【詳解】解:∵m、n是方程x2+2018x﹣1=0的兩個根,m+n=-2018,=﹣1×(﹣2018﹣1)=﹣1×(﹣1)=1,故答案為:1.【點睛】本題考查了根與系數(shù)的關系,如果一元二次方程ax2+bx+c=0的兩根分別為x1與x2,則三、解答題(共8題,共72分)17、(1);(2)【解析】
(1)連接OC,根據(jù)切線的性質得到OC⊥DE,可以證明AD∥OC,根據(jù)平行線的性質可得,則根據(jù)等腰三角形的性質可得,利用,化簡計算即可得到答案;
(2)連接CF,根據(jù),可得,利用中垂線和等腰三角形的性質可證四邊形是平行四邊形,得到△AOF為等邊三角形,由并可得四邊形是菱形,可證是等邊三角形,有∠FAO=60°,再根據(jù)弧長公式計算即可.【詳解】解:(1)如圖示,連結,∵是的切線,∴.又,∴,∴,∴.∵,∴.∴.∵,∴.∴,即.(2)如圖示,連結,∵,,∴,∴,∴,∴,∵,∴四邊形是平行四邊形,∵,∴四邊形是菱形,∴,∴是等邊三角形,∴,∴,∵,∴的長.【點睛】本題考查的是切線的性質、菱形的判定和性質、弧長的計算,掌握切線的性質定理、弧長公式是解題的關鍵.18、(1)線段AB的垂直平分線(或中垂線);(2)AC=53.【解析】
(1)垂直平分線:經(jīng)過某一條線段的中點,并且垂直于這條線段的直線,叫做這條線段的垂直平分線(2)根據(jù)題意垂直平分線定理可得AD=BD,得到CD=2,又因為已知sin∠DAC=17【詳解】(1)小明所求作的直線DE是線段AB的垂直平分線(或中垂線);故答案為線段AB的垂直平分線(或中垂線);(2)過點D作DF⊥AC,垂足為點F,如圖,∵DE是線段AB的垂直平分線,∴AD=BD=7∴CD=BC﹣BD=2,在Rt△ADF中,∵sin∠DAC=DFAD∴DF=1,在Rt△ADF中,AF=72在Rt△CDF中,CF=22∴AC=AF+CF=43【點睛】本題考查了垂直平分線的尺規(guī)作圖方法,三角函數(shù)和勾股定理求線段長度,解本題的關鍵是充分利用中垂線,將已知條件與未知條件結合起來解題.19、(1);(2)-1【解析】
(1)②+①得出4x=-4,求出x,把x的值代入①求出y即可;(2)把x=-y代入x-y=4求出y,再求出x,最后把x、y代入②求出答案即可.【詳解】解:(1)①+②得,.將時代入①得,,∴.(2)設“□”為a,∵x、y是一對相反數(shù),∴把x=-y代入x-y=4得:-y-y=4,解得:y=-2,即x=2,所以方程組的解是,代入ax+y=-8得:2a-2=-8,解得:a=-1,即原題中“□”是-1.【點睛】本題考查了解二元一次方程組,也考查了二元一次方程組的解,能得出關于a的方程是解(2)的關鍵.20、(1)()或(﹣1,﹣1);(1)①2<a<17②b的最小值是【解析】
(1)把x=y=m,a=1,b=1代入函數(shù)解析式,列出方程,通過解方程求得m的值即可;(1)拋物線上恒有兩個不同的“和諧點”A、B.則關于m的方程m=am1+(3b+1)m+b-3的根的判別式△=9b1-4ab+11a.①令y=9b1-4ab+11a,對于任意實數(shù)b,均有y>2,所以根據(jù)二次函數(shù)y=9b1-4ab+11的圖象性質解答;②利用二次函數(shù)圖象的對稱性質解答即可.【詳解】(1)當a=1,b=1時,m=1m1+4m+1﹣4,解得m=或m=﹣1.所以點P的坐標是(,)或(﹣1,﹣1);(1)m=am1+(3b+1)m+b﹣3,△=9b1﹣4ab+11a.①令y=9b1﹣4ab+11a,對于任意實數(shù)b,均有y>2,也就是說拋物線y=9b1﹣4ab+11的圖象都在b軸(橫軸)上方.∴△=(﹣4a)1﹣4×9×11a<2.∴2<a<17.②由“和諧點”定義可設A(x1,y1),B(x1,y1),則x1,x1是ax1+(3b+1)x+b﹣3=2的兩不等實根,.∴線段AB的中點坐標是:(﹣,﹣).代入對稱軸y=x﹣(+1),得﹣=﹣(+1),∴3b+1=+a.∵a>2,>2,a?=1為定值,∴3b+1=+a≥1=1,∴b≥.∴b的最小值是.【點睛】此題考查了二次函數(shù)綜合題,其中涉及到了二次函數(shù)圖象上點的坐標特征,拋物線與x軸的交點,一元二次方程與二次函數(shù)解析式間的關系,二次函數(shù)圖象的性質等知識點,難度較大,解題時,掌握“和諧點”的定義是解題的難點.21、(1)證明見解析(2)①線段EC,CF與BC的數(shù)量關系為:CE+CF=BC.②CE+CF=BC(3)【解析】
(1)利用包含60°角的菱形,證明△BAE≌△CAF,可求證;(2)由特殊到一般,證明△CAE′∽△CGE,從而可以得到EC、CF與BC的數(shù)量關系(3)連接BD與AC交于點H,利用三角函數(shù)BH,AH,CH的長度,最后求BC長度.【詳解】解:(1)證明:∵四邊形ABCD是菱形,∠BAD=120°,∴∠BAC=60°,∠B=∠ACF=60°,AB=BC,AB=AC,∵∠BAE+∠EAC=∠EAC+∠CAF=60°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF,∴EC+CF=EC+BE=BC,即EC+CF=BC;(2)知識探究:①線段EC,CF與BC的數(shù)量關系為:CE+CF=BC.理由:如圖乙,過點A作AE′∥EG,AF′∥GF,分別交BC、CD于E′、F′.
類比(1)可得:E′C+CF′=BC,
∵AE′∥EG,
∴△CAE′∽△CGE,,同理可得:,,即;②CE+CF=BC.理由如下:過點A作AE′∥EG,AF′∥GF,分別交BC、CD于E′、F′.類比(1)可得:E′C+CF′=BC,∵AE′∥EG,∴△CAE′∽△CAE,∴,∴CE=CE′,同理可得:CF=CF′,∴CE+CF=CE′+CF′=(CE′+CF′)=BC,即CE+CF=BC;(3)連接BD與AC交于點H,如圖所示:在Rt△ABH中,∵AB=8,∠BAC=60°,∴BH=ABsin60°=8×=,AH=CH=ABcos60°=8×=4,∴GH===1,∴CG=4-1=3,∴,∴t=(t>2),由(2)②得:CE+CF=BC,∴CE=BC-CF=×8-=.【點睛】本題屬于相似形綜合題,主要考查了全等三角形的判定和性質、菱形的性質,相似三角形的判定和性質等知識的綜合運
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025青海省安全員-C證(專職安全員)考試題庫
- 早教民族風情課程設計
- 線性電子線路課程設計
- 紅巖寺隧道工程課程設計
- 簡單彩燈課程設計
- 物聯(lián)網(wǎng)工程課程設計
- 游戲原創(chuàng)插畫課程設計
- 2025浙江省安全員考試題庫附答案
- 活出自信課程設計
- 簡單的弧焊方法課程設計
- JJF(蘇) 276-2024 接觸(觸針)式表面輪廓測量儀校準規(guī)范
- 帕金森綜合征與吞咽障礙
- 污泥(廢水)運輸服務方案(技術方案)
- 2024-2030年中國降壓藥行業(yè)市場規(guī)模分析及發(fā)展趨勢與投資研究報告
- 國家開放大學《管理信息系統(tǒng)》大作業(yè)參考答案
- 2024年信息系統(tǒng)項目管理師題庫及答案
- 2024年秋新蘇教版三年級上冊科學全冊復習資料
- 《計算機視覺-基于OpenCV的圖像處理》全套教學課件
- TCNEA-高溫氣冷堆球形燃料元件包裝技術規(guī)范
- DL∕T 5161.6-2018 電氣裝置安裝工程質量檢驗及評定規(guī)程 第6部分:接地裝置施工質量檢驗
- DL∕T 1502-2016 廠用電繼電保護整定計算導則
評論
0/150
提交評論