遠(yuǎn)程授課山西省大同市第一中學(xué)2022年高考沖刺數(shù)學(xué)模擬試題含解析_第1頁(yè)
遠(yuǎn)程授課山西省大同市第一中學(xué)2022年高考沖刺數(shù)學(xué)模擬試題含解析_第2頁(yè)
遠(yuǎn)程授課山西省大同市第一中學(xué)2022年高考沖刺數(shù)學(xué)模擬試題含解析_第3頁(yè)
遠(yuǎn)程授課山西省大同市第一中學(xué)2022年高考沖刺數(shù)學(xué)模擬試題含解析_第4頁(yè)
遠(yuǎn)程授課山西省大同市第一中學(xué)2022年高考沖刺數(shù)學(xué)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖所示,矩形的對(duì)角線(xiàn)相交于點(diǎn),為的中點(diǎn),若,則等于().A. B. C. D.2.已知函數(shù),則()A.2 B.3 C.4 D.53.已知函數(shù)若對(duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,則實(shí)數(shù)的取值范圍是()A. B. C. D.4.函數(shù)(或)的圖象大致是()A. B. C. D.5.已知點(diǎn),是函數(shù)的函數(shù)圖像上的任意兩點(diǎn),且在點(diǎn)處的切線(xiàn)與直線(xiàn)AB平行,則()A.,b為任意非零實(shí)數(shù) B.,a為任意非零實(shí)數(shù)C.a(chǎn)、b均為任意實(shí)數(shù) D.不存在滿(mǎn)足條件的實(shí)數(shù)a,b6.若的展開(kāi)式中的系數(shù)為-45,則實(shí)數(shù)的值為()A. B.2 C. D.7.函數(shù)(其中,,)的圖象如圖,則此函數(shù)表達(dá)式為()A. B.C. D.8.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.9.設(shè),則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.函數(shù)在上的大致圖象是()A. B.C. D.11.的內(nèi)角的對(duì)邊分別為,若,則內(nèi)角()A. B. C. D.12.設(shè),,,則、、的大小關(guān)系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,若雙曲線(xiàn)(,)的離心率為,則該雙曲線(xiàn)的漸近線(xiàn)方程為_(kāi)_______.14.設(shè),滿(mǎn)足約束條件,則的最大值為_(kāi)_____.15.函數(shù)的最小正周期是_______________,單調(diào)遞增區(qū)間是__________.16.從甲、乙等8名志愿者中選5人參加周一到周五的社區(qū)服務(wù),每天安排一人,每人只參加一天.若要求甲、乙兩人至少選一人參加,且當(dāng)甲、乙兩人都參加時(shí),他們參加社區(qū)服務(wù)的日期不相鄰,那么不同的安排種數(shù)為_(kāi)_____________.(用數(shù)字作答)三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在銳角中,角A,B,C所對(duì)的邊分別為a,b,c.已知.(1)求的值;(2)當(dāng),且時(shí),求的面積.18.(12分)在直角坐標(biāo)系中,已知點(diǎn),的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.(1)求的普通方程和的直角坐標(biāo)方程;(2)設(shè)曲線(xiàn)與曲線(xiàn)相交于,兩點(diǎn),求的值.19.(12分)如圖所示,直角梯形中,,,,四邊形為矩形,.(1)求證:平面平面;(2)在線(xiàn)段上是否存在點(diǎn),使得直線(xiàn)與平面所成角的正弦值為,若存在,求出線(xiàn)段的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.20.(12分)在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為(為參數(shù)).在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,圓的方程為.(1)寫(xiě)出直線(xiàn)的普通方程和圓的直角坐標(biāo)方程;(2)若點(diǎn)坐標(biāo)為,圓與直線(xiàn)交于兩點(diǎn),求的值.21.(12分)在平面直角坐標(biāo)系xOy中,拋物線(xiàn)C:,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程為().(1)求拋物線(xiàn)C的極坐標(biāo)方程;(2)若拋物線(xiàn)C與直線(xiàn)l交于A,B兩點(diǎn),求的值.22.(10分)在中,角,,所對(duì)的邊分別為,,,且.求的值;設(shè)的平分線(xiàn)與邊交于點(diǎn),已知,,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

由平面向量基本定理,化簡(jiǎn)得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡(jiǎn),所以,即,故選A.【點(diǎn)睛】本題主要考查了平面向量基本定理的應(yīng)用,其中解答熟記平面向量的基本定理,化簡(jiǎn)得到是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,數(shù)基礎(chǔ)題.2.A【解析】

根據(jù)分段函數(shù)直接計(jì)算得到答案.【詳解】因?yàn)樗?故選:.【點(diǎn)睛】本題考查了分段函數(shù)計(jì)算,意在考查學(xué)生的計(jì)算能力.3.C【解析】分析:先求導(dǎo),再對(duì)a分類(lèi)討論求函數(shù)的單調(diào)區(qū)間,再畫(huà)圖分析轉(zhuǎn)化對(duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,得到關(guān)于a的不等式組,再解不等式組得到實(shí)數(shù)a的取值范圍.詳解:由題得.當(dāng)a<1時(shí),,所以函數(shù)f(x)在單調(diào)遞減,因?yàn)閷?duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,所以,所以故a≥1,與a<1矛盾,故a<1矛盾.當(dāng)1≤a<e時(shí),函數(shù)f(x)在[0,lna]單調(diào)遞增,在(lna,1]單調(diào)遞減.所以因?yàn)閷?duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,所以,所以即令,所以所以函數(shù)g(a)在(1,e)上單調(diào)遞減,所以,所以當(dāng)1≤a<e時(shí),滿(mǎn)足題意.當(dāng)a時(shí),函數(shù)f(x)在(0,1)單調(diào)遞增,因?yàn)閷?duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,所以,故1+1,所以故綜上所述,a∈.故選C.點(diǎn)睛:本題的難點(diǎn)在于“對(duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有”的轉(zhuǎn)化.由于是函數(shù)的問(wèn)題,所以我們要聯(lián)想到利用函數(shù)的性質(zhì)(單調(diào)性、奇偶性、周期性、對(duì)稱(chēng)性、最值、極值等)來(lái)分析解答問(wèn)題.本題就是把這個(gè)條件和函數(shù)的單調(diào)性和最值聯(lián)系起來(lái),完成了數(shù)學(xué)問(wèn)題的等價(jià)轉(zhuǎn)化,找到了問(wèn)題的突破口.4.A【解析】

確定函數(shù)的奇偶性,排除兩個(gè)選項(xiàng),再求時(shí)的函數(shù)值,再排除一個(gè),得正確選項(xiàng).【詳解】分析知,函數(shù)(或)為偶函數(shù),所以圖象關(guān)于軸對(duì)稱(chēng),排除B,C,當(dāng)時(shí),,排除D,故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,解題時(shí)可通過(guò)研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對(duì)稱(chēng)性等,研究特殊的函數(shù)的值、函數(shù)值的正負(fù),以及函數(shù)值的變化趨勢(shì),排除錯(cuò)誤選項(xiàng),得正確結(jié)論.5.A【解析】

求得的導(dǎo)函數(shù),結(jié)合兩點(diǎn)斜率公式和兩直線(xiàn)平行的條件:斜率相等,化簡(jiǎn)可得,為任意非零實(shí)數(shù).【詳解】依題意,在點(diǎn)處的切線(xiàn)與直線(xiàn)AB平行,即有,所以,由于對(duì)任意上式都成立,可得,為非零實(shí)數(shù).故選:A【點(diǎn)睛】本題考查導(dǎo)數(shù)的運(yùn)用,求切線(xiàn)的斜率,考查兩點(diǎn)的斜率公式,以及化簡(jiǎn)運(yùn)算能力,屬于中檔題.6.D【解析】

將多項(xiàng)式的乘法式展開(kāi),結(jié)合二項(xiàng)式定理展開(kāi)式通項(xiàng),即可求得的值.【詳解】∵所以展開(kāi)式中的系數(shù)為,∴解得.故選:D.【點(diǎn)睛】本題考查了二項(xiàng)式定理展開(kāi)式通項(xiàng)的簡(jiǎn)單應(yīng)用,指定項(xiàng)系數(shù)的求法,屬于基礎(chǔ)題.7.B【解析】

由圖象的頂點(diǎn)坐標(biāo)求出,由周期求出,通過(guò)圖象經(jīng)過(guò)點(diǎn),求出,從而得出函數(shù)解析式.【詳解】解:由圖象知,,則,圖中的點(diǎn)應(yīng)對(duì)應(yīng)正弦曲線(xiàn)中的點(diǎn),所以,解得,故函數(shù)表達(dá)式為.故選:B.【點(diǎn)睛】本題主要考查三角函數(shù)圖象及性質(zhì),三角函數(shù)的解析式等基礎(chǔ)知識(shí);考查考生的化歸與轉(zhuǎn)化思想,數(shù)形結(jié)合思想,屬于基礎(chǔ)題.8.A【解析】

由余弦定理求出角,再由三角形面積公式計(jì)算即可.【詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【點(diǎn)睛】本題主要考查了余弦定理的應(yīng)用,三角形的面積公式,考查了學(xué)生的運(yùn)算求解能力.9.C【解析】

根據(jù)充分條件和必要條件的定義結(jié)合對(duì)數(shù)的運(yùn)算進(jìn)行判斷即可.【詳解】∵a,b∈(1,+∞),∴a>b?logab<1,logab<1?a>b,∴a>b是logab<1的充分必要條件,故選C.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,根據(jù)不等式的解法是解決本題的關(guān)鍵.10.D【解析】

討論的取值范圍,然后對(duì)函數(shù)進(jìn)行求導(dǎo),利用導(dǎo)數(shù)的幾何意義即可判斷.【詳解】當(dāng)時(shí),,則,所以函數(shù)在上單調(diào)遞增,令,則,根據(jù)三角函數(shù)的性質(zhì),當(dāng)時(shí),,故切線(xiàn)的斜率變小,當(dāng)時(shí),,故切線(xiàn)的斜率變大,可排除A、B;當(dāng)時(shí),,則,所以函數(shù)在上單調(diào)遞增,令,,當(dāng)時(shí),,故切線(xiàn)的斜率變大,當(dāng)時(shí),,故切線(xiàn)的斜率變小,可排除C,故選:D【點(diǎn)睛】本題考查了識(shí)別函數(shù)的圖像,考查了導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系以及導(dǎo)數(shù)的幾何意義,屬于中檔題.11.C【解析】

由正弦定理化邊為角,由三角函數(shù)恒等變換可得.【詳解】∵,由正弦定理可得,∴,三角形中,∴,∴.故選:C.【點(diǎn)睛】本題考查正弦定理,考查兩角和的正弦公式和誘導(dǎo)公式,掌握正弦定理的邊角互化是解題關(guān)鍵.12.D【解析】

因?yàn)?,,所以且在上單調(diào)遞減,且所以,所以,又因?yàn)?,,所以,所?故選:D.【點(diǎn)睛】本題考查利用指對(duì)數(shù)函數(shù)的單調(diào)性比較指對(duì)數(shù)的大小,難度一般.除了可以直接利用單調(diào)性比較大小,還可以根據(jù)中間值“”比較大小.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

利用,解出,即可求出雙曲線(xiàn)的漸近線(xiàn)方程.【詳解】,且,,,該雙曲線(xiàn)的漸近線(xiàn)方程為:.故答案為:.【點(diǎn)睛】本題考查了雙曲線(xiàn)離心率與漸近線(xiàn)方程,考查了雙曲線(xiàn)基本量的關(guān)系,考查了運(yùn)算能力,屬于基礎(chǔ)題.14.29【解析】

由約束條件作出可行域,化目標(biāo)函數(shù)為以原點(diǎn)為圓心的圓,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖:聯(lián)立,解得,目標(biāo)函數(shù)是以原點(diǎn)為圓心,以為半徑的圓,由圖可知,此圓經(jīng)過(guò)點(diǎn)A時(shí),半徑最大,此時(shí)也最大,最大值為.所以本題答案為29.【點(diǎn)睛】線(xiàn)性規(guī)劃問(wèn)題,首先明確可行域?qū)?yīng)的是封閉區(qū)域還是開(kāi)放區(qū)域、分界線(xiàn)是實(shí)線(xiàn)還是虛線(xiàn),其次確定目標(biāo)函數(shù)的幾何意義,是求直線(xiàn)的截距、兩點(diǎn)間距離的平方、直線(xiàn)的斜率、還是點(diǎn)到直線(xiàn)的距離等等,最后結(jié)合圖形確定目標(biāo)函數(shù)最值取法、值域范圍.15.,,【解析】

化簡(jiǎn)函數(shù)的解析式,利用余弦函數(shù)的圖象和性質(zhì)求解即可.【詳解】函數(shù),最小正周期,令,,可得,,所以單調(diào)遞增區(qū)間是,,.故答案為:,,,.【點(diǎn)睛】本題主要考查了二倍角的公式的應(yīng)用,余弦函數(shù)的圖象與性質(zhì),屬于中檔題.16.5040.【解析】分兩類(lèi),一類(lèi)是甲乙都參加,另一類(lèi)是甲乙中選一人,方法數(shù)為。填5040.【點(diǎn)睛】利用排列組合計(jì)數(shù)時(shí),關(guān)鍵是正確進(jìn)行分類(lèi)和分步,分類(lèi)時(shí)要注意不重不漏.在本題中,甲與乙是兩個(gè)特殊元素,對(duì)于特殊元素“優(yōu)先法”,所以有了分類(lèi)。本題還涉及不相鄰問(wèn)題,采用“插空法”。三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2)【解析】

(1)利用二倍角公式求解即可,注意隱含條件.(2)利用(1)中的結(jié)論,結(jié)合正弦定理和同角三角函數(shù)的關(guān)系易得的值,又由求出的值,最后由正弦定理求出的值,根據(jù)三角形的面積公式即可計(jì)算得出.【詳解】(1)由已知可得,所以,因?yàn)樵阡J角中,,所以(2)因?yàn)?,所以,因?yàn)槭卿J角三角形,所以,所以.由正弦定理可得:,所以,所以【點(diǎn)睛】此類(lèi)問(wèn)題是高考的常考題型,主要考查了正弦定理、三角函數(shù)以及三角恒等變換等知識(shí),同時(shí)考查了學(xué)生的基本運(yùn)算能力和利用三角公式進(jìn)行恒等變換的技能,屬于中檔題.18.(1);(2)【解析】

(1)消去參數(shù)方程中的參數(shù),求得的普通方程,利用極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化公式,求得的直角坐標(biāo)方程.(2)求得曲線(xiàn)的標(biāo)準(zhǔn)參數(shù)方程,代入的直角坐標(biāo)方程,寫(xiě)出韋達(dá)定理,根據(jù)直線(xiàn)參數(shù)中參數(shù)的幾何意義,求得的值.【詳解】(1)由的參數(shù)方程(為參數(shù)),消去參數(shù)可得,由曲線(xiàn)的極坐標(biāo)方程為,得,所以的直角坐方程為,即.(2)因?yàn)樵谇€(xiàn)上,故可設(shè)曲線(xiàn)的參數(shù)方程為(為參數(shù)),代入化簡(jiǎn)可得.設(shè),對(duì)應(yīng)的參數(shù)分別為,,則,,所以.【點(diǎn)睛】本小題主要考查參數(shù)方程化為普通方程,考查極坐標(biāo)方程化為直角坐標(biāo)方程,考查利用利用和直線(xiàn)參數(shù)方程中參數(shù)的幾何意義進(jìn)行計(jì)算,屬于中檔題.19.(1)見(jiàn)解析;(2)存在,長(zhǎng)【解析】

(1)先證面,又因?yàn)槊?所以平面平面.(2)根據(jù)題意建立空間直角坐標(biāo)系.列出各點(diǎn)的坐標(biāo)表示,設(shè),則可得出向量,求出平面的法向量為,利用直線(xiàn)與平面所成角的正弦公式列方程求出或,從而求出線(xiàn)段的長(zhǎng).【詳解】解:(1)證明:因?yàn)樗倪呅螢榫匦?∴.∵∴∴∴面∴面又∵面∴平面平面(2)取為原點(diǎn),所在直線(xiàn)為軸,所在直線(xiàn)為軸建立空間直角坐標(biāo)系.如圖所示:則,,,,,設(shè),;∴,,設(shè)平面的法向量為,∴,不防設(shè).∴,化簡(jiǎn)得,解得或;當(dāng)時(shí),,∴;當(dāng)時(shí),,∴;綜上存在這樣的點(diǎn),線(xiàn)段的長(zhǎng).【點(diǎn)睛】本題考查平面與平面垂直的判定定理的應(yīng)用,考查利用線(xiàn)面所成角求參數(shù)問(wèn)題,是幾何綜合題,考查空間想象力以及計(jì)算能力.20.(1)(2)【解析】試題分析:(1)由加減消元得直線(xiàn)的普通方程,由得圓的直角坐標(biāo)方程;(2)把直線(xiàn)l的參數(shù)方程代入圓C的直角坐標(biāo)方程,由直線(xiàn)參數(shù)方程幾何意義得|PA|+|PB|=|t1|+|t2|=t1+t2,再根據(jù)韋達(dá)定理可得結(jié)果試題解析:解:(Ⅰ)由得直線(xiàn)l的普通方程為x+y﹣3﹣=0又由得ρ2=2ρsinθ,化為直角坐標(biāo)方程為x2+(y﹣)2=5;(Ⅱ)把直線(xiàn)l的參數(shù)方程代入圓C的直角坐標(biāo)方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0設(shè)t1,t2是上述方程的兩實(shí)數(shù)根,所以t1+t2=3又直線(xiàn)l過(guò)點(diǎn)P,A、B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.21.(1)(2)【解析】

(1)利用極坐標(biāo)和直角坐標(biāo)的互化公式,,即可求得結(jié)果.(2)由的幾何意義得,.將代入拋物線(xiàn)C的方程,利用韋

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論