![遠程授課山西省大同市第一中學2022年高考沖刺數(shù)學模擬試題含解析_第1頁](http://file4.renrendoc.com/view/ce20953725ba5fc0a305d7d7f7ea3b07/ce20953725ba5fc0a305d7d7f7ea3b071.gif)
![遠程授課山西省大同市第一中學2022年高考沖刺數(shù)學模擬試題含解析_第2頁](http://file4.renrendoc.com/view/ce20953725ba5fc0a305d7d7f7ea3b07/ce20953725ba5fc0a305d7d7f7ea3b072.gif)
![遠程授課山西省大同市第一中學2022年高考沖刺數(shù)學模擬試題含解析_第3頁](http://file4.renrendoc.com/view/ce20953725ba5fc0a305d7d7f7ea3b07/ce20953725ba5fc0a305d7d7f7ea3b073.gif)
![遠程授課山西省大同市第一中學2022年高考沖刺數(shù)學模擬試題含解析_第4頁](http://file4.renrendoc.com/view/ce20953725ba5fc0a305d7d7f7ea3b07/ce20953725ba5fc0a305d7d7f7ea3b074.gif)
![遠程授課山西省大同市第一中學2022年高考沖刺數(shù)學模擬試題含解析_第5頁](http://file4.renrendoc.com/view/ce20953725ba5fc0a305d7d7f7ea3b07/ce20953725ba5fc0a305d7d7f7ea3b075.gif)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,矩形的對角線相交于點,為的中點,若,則等于().A. B. C. D.2.已知函數(shù),則()A.2 B.3 C.4 D.53.已知函數(shù)若對區(qū)間內(nèi)的任意實數(shù),都有,則實數(shù)的取值范圍是()A. B. C. D.4.函數(shù)(或)的圖象大致是()A. B. C. D.5.已知點,是函數(shù)的函數(shù)圖像上的任意兩點,且在點處的切線與直線AB平行,則()A.,b為任意非零實數(shù) B.,a為任意非零實數(shù)C.a(chǎn)、b均為任意實數(shù) D.不存在滿足條件的實數(shù)a,b6.若的展開式中的系數(shù)為-45,則實數(shù)的值為()A. B.2 C. D.7.函數(shù)(其中,,)的圖象如圖,則此函數(shù)表達式為()A. B.C. D.8.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.9.設(shè),則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.函數(shù)在上的大致圖象是()A. B.C. D.11.的內(nèi)角的對邊分別為,若,則內(nèi)角()A. B. C. D.12.設(shè),,,則、、的大小關(guān)系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,若雙曲線(,)的離心率為,則該雙曲線的漸近線方程為________.14.設(shè),滿足約束條件,則的最大值為______.15.函數(shù)的最小正周期是_______________,單調(diào)遞增區(qū)間是__________.16.從甲、乙等8名志愿者中選5人參加周一到周五的社區(qū)服務(wù),每天安排一人,每人只參加一天.若要求甲、乙兩人至少選一人參加,且當甲、乙兩人都參加時,他們參加社區(qū)服務(wù)的日期不相鄰,那么不同的安排種數(shù)為______________.(用數(shù)字作答)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在銳角中,角A,B,C所對的邊分別為a,b,c.已知.(1)求的值;(2)當,且時,求的面積.18.(12分)在直角坐標系中,已知點,的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求的普通方程和的直角坐標方程;(2)設(shè)曲線與曲線相交于,兩點,求的值.19.(12分)如圖所示,直角梯形中,,,,四邊形為矩形,.(1)求證:平面平面;(2)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長,若不存在,請說明理由.20.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).在以原點為極點,軸正半軸為極軸的極坐標系中,圓的方程為.(1)寫出直線的普通方程和圓的直角坐標方程;(2)若點坐標為,圓與直線交于兩點,求的值.21.(12分)在平面直角坐標系xOy中,拋物線C:,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為().(1)求拋物線C的極坐標方程;(2)若拋物線C與直線l交于A,B兩點,求的值.22.(10分)在中,角,,所對的邊分別為,,,且.求的值;設(shè)的平分線與邊交于點,已知,,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
由平面向量基本定理,化簡得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡,所以,即,故選A.【點睛】本題主要考查了平面向量基本定理的應用,其中解答熟記平面向量的基本定理,化簡得到是解答的關(guān)鍵,著重考查了運算與求解能力,數(shù)基礎(chǔ)題.2.A【解析】
根據(jù)分段函數(shù)直接計算得到答案.【詳解】因為所以.故選:.【點睛】本題考查了分段函數(shù)計算,意在考查學生的計算能力.3.C【解析】分析:先求導,再對a分類討論求函數(shù)的單調(diào)區(qū)間,再畫圖分析轉(zhuǎn)化對區(qū)間內(nèi)的任意實數(shù),都有,得到關(guān)于a的不等式組,再解不等式組得到實數(shù)a的取值范圍.詳解:由題得.當a<1時,,所以函數(shù)f(x)在單調(diào)遞減,因為對區(qū)間內(nèi)的任意實數(shù),都有,所以,所以故a≥1,與a<1矛盾,故a<1矛盾.當1≤a<e時,函數(shù)f(x)在[0,lna]單調(diào)遞增,在(lna,1]單調(diào)遞減.所以因為對區(qū)間內(nèi)的任意實數(shù),都有,所以,所以即令,所以所以函數(shù)g(a)在(1,e)上單調(diào)遞減,所以,所以當1≤a<e時,滿足題意.當a時,函數(shù)f(x)在(0,1)單調(diào)遞增,因為對區(qū)間內(nèi)的任意實數(shù),都有,所以,故1+1,所以故綜上所述,a∈.故選C.點睛:本題的難點在于“對區(qū)間內(nèi)的任意實數(shù),都有”的轉(zhuǎn)化.由于是函數(shù)的問題,所以我們要聯(lián)想到利用函數(shù)的性質(zhì)(單調(diào)性、奇偶性、周期性、對稱性、最值、極值等)來分析解答問題.本題就是把這個條件和函數(shù)的單調(diào)性和最值聯(lián)系起來,完成了數(shù)學問題的等價轉(zhuǎn)化,找到了問題的突破口.4.A【解析】
確定函數(shù)的奇偶性,排除兩個選項,再求時的函數(shù)值,再排除一個,得正確選項.【詳解】分析知,函數(shù)(或)為偶函數(shù),所以圖象關(guān)于軸對稱,排除B,C,當時,,排除D,故選:A.【點睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,解題時可通過研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對稱性等,研究特殊的函數(shù)的值、函數(shù)值的正負,以及函數(shù)值的變化趨勢,排除錯誤選項,得正確結(jié)論.5.A【解析】
求得的導函數(shù),結(jié)合兩點斜率公式和兩直線平行的條件:斜率相等,化簡可得,為任意非零實數(shù).【詳解】依題意,在點處的切線與直線AB平行,即有,所以,由于對任意上式都成立,可得,為非零實數(shù).故選:A【點睛】本題考查導數(shù)的運用,求切線的斜率,考查兩點的斜率公式,以及化簡運算能力,屬于中檔題.6.D【解析】
將多項式的乘法式展開,結(jié)合二項式定理展開式通項,即可求得的值.【詳解】∵所以展開式中的系數(shù)為,∴解得.故選:D.【點睛】本題考查了二項式定理展開式通項的簡單應用,指定項系數(shù)的求法,屬于基礎(chǔ)題.7.B【解析】
由圖象的頂點坐標求出,由周期求出,通過圖象經(jīng)過點,求出,從而得出函數(shù)解析式.【詳解】解:由圖象知,,則,圖中的點應對應正弦曲線中的點,所以,解得,故函數(shù)表達式為.故選:B.【點睛】本題主要考查三角函數(shù)圖象及性質(zhì),三角函數(shù)的解析式等基礎(chǔ)知識;考查考生的化歸與轉(zhuǎn)化思想,數(shù)形結(jié)合思想,屬于基礎(chǔ)題.8.A【解析】
由余弦定理求出角,再由三角形面積公式計算即可.【詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【點睛】本題主要考查了余弦定理的應用,三角形的面積公式,考查了學生的運算求解能力.9.C【解析】
根據(jù)充分條件和必要條件的定義結(jié)合對數(shù)的運算進行判斷即可.【詳解】∵a,b∈(1,+∞),∴a>b?logab<1,logab<1?a>b,∴a>b是logab<1的充分必要條件,故選C.【點睛】本題主要考查充分條件和必要條件的判斷,根據(jù)不等式的解法是解決本題的關(guān)鍵.10.D【解析】
討論的取值范圍,然后對函數(shù)進行求導,利用導數(shù)的幾何意義即可判斷.【詳解】當時,,則,所以函數(shù)在上單調(diào)遞增,令,則,根據(jù)三角函數(shù)的性質(zhì),當時,,故切線的斜率變小,當時,,故切線的斜率變大,可排除A、B;當時,,則,所以函數(shù)在上單調(diào)遞增,令,,當時,,故切線的斜率變大,當時,,故切線的斜率變小,可排除C,故選:D【點睛】本題考查了識別函數(shù)的圖像,考查了導數(shù)與函數(shù)單調(diào)性的關(guān)系以及導數(shù)的幾何意義,屬于中檔題.11.C【解析】
由正弦定理化邊為角,由三角函數(shù)恒等變換可得.【詳解】∵,由正弦定理可得,∴,三角形中,∴,∴.故選:C.【點睛】本題考查正弦定理,考查兩角和的正弦公式和誘導公式,掌握正弦定理的邊角互化是解題關(guān)鍵.12.D【解析】
因為,,所以且在上單調(diào)遞減,且所以,所以,又因為,,所以,所以.故選:D.【點睛】本題考查利用指對數(shù)函數(shù)的單調(diào)性比較指對數(shù)的大小,難度一般.除了可以直接利用單調(diào)性比較大小,還可以根據(jù)中間值“”比較大小.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用,解出,即可求出雙曲線的漸近線方程.【詳解】,且,,,該雙曲線的漸近線方程為:.故答案為:.【點睛】本題考查了雙曲線離心率與漸近線方程,考查了雙曲線基本量的關(guān)系,考查了運算能力,屬于基礎(chǔ)題.14.29【解析】
由約束條件作出可行域,化目標函數(shù)為以原點為圓心的圓,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.【詳解】由約束條件作出可行域如圖:聯(lián)立,解得,目標函數(shù)是以原點為圓心,以為半徑的圓,由圖可知,此圓經(jīng)過點A時,半徑最大,此時也最大,最大值為.所以本題答案為29.【點睛】線性規(guī)劃問題,首先明確可行域?qū)氖欠忾]區(qū)域還是開放區(qū)域、分界線是實線還是虛線,其次確定目標函數(shù)的幾何意義,是求直線的截距、兩點間距離的平方、直線的斜率、還是點到直線的距離等等,最后結(jié)合圖形確定目標函數(shù)最值取法、值域范圍.15.,,【解析】
化簡函數(shù)的解析式,利用余弦函數(shù)的圖象和性質(zhì)求解即可.【詳解】函數(shù),最小正周期,令,,可得,,所以單調(diào)遞增區(qū)間是,,.故答案為:,,,.【點睛】本題主要考查了二倍角的公式的應用,余弦函數(shù)的圖象與性質(zhì),屬于中檔題.16.5040.【解析】分兩類,一類是甲乙都參加,另一類是甲乙中選一人,方法數(shù)為。填5040.【點睛】利用排列組合計數(shù)時,關(guān)鍵是正確進行分類和分步,分類時要注意不重不漏.在本題中,甲與乙是兩個特殊元素,對于特殊元素“優(yōu)先法”,所以有了分類。本題還涉及不相鄰問題,采用“插空法”。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】
(1)利用二倍角公式求解即可,注意隱含條件.(2)利用(1)中的結(jié)論,結(jié)合正弦定理和同角三角函數(shù)的關(guān)系易得的值,又由求出的值,最后由正弦定理求出的值,根據(jù)三角形的面積公式即可計算得出.【詳解】(1)由已知可得,所以,因為在銳角中,,所以(2)因為,所以,因為是銳角三角形,所以,所以.由正弦定理可得:,所以,所以【點睛】此類問題是高考的??碱}型,主要考查了正弦定理、三角函數(shù)以及三角恒等變換等知識,同時考查了學生的基本運算能力和利用三角公式進行恒等變換的技能,屬于中檔題.18.(1);(2)【解析】
(1)消去參數(shù)方程中的參數(shù),求得的普通方程,利用極坐標和直角坐標的轉(zhuǎn)化公式,求得的直角坐標方程.(2)求得曲線的標準參數(shù)方程,代入的直角坐標方程,寫出韋達定理,根據(jù)直線參數(shù)中參數(shù)的幾何意義,求得的值.【詳解】(1)由的參數(shù)方程(為參數(shù)),消去參數(shù)可得,由曲線的極坐標方程為,得,所以的直角坐方程為,即.(2)因為在曲線上,故可設(shè)曲線的參數(shù)方程為(為參數(shù)),代入化簡可得.設(shè),對應的參數(shù)分別為,,則,,所以.【點睛】本小題主要考查參數(shù)方程化為普通方程,考查極坐標方程化為直角坐標方程,考查利用利用和直線參數(shù)方程中參數(shù)的幾何意義進行計算,屬于中檔題.19.(1)見解析;(2)存在,長【解析】
(1)先證面,又因為面,所以平面平面.(2)根據(jù)題意建立空間直角坐標系.列出各點的坐標表示,設(shè),則可得出向量,求出平面的法向量為,利用直線與平面所成角的正弦公式列方程求出或,從而求出線段的長.【詳解】解:(1)證明:因為四邊形為矩形,∴.∵∴∴∴面∴面又∵面∴平面平面(2)取為原點,所在直線為軸,所在直線為軸建立空間直角坐標系.如圖所示:則,,,,,設(shè),;∴,,設(shè)平面的法向量為,∴,不防設(shè).∴,化簡得,解得或;當時,,∴;當時,,∴;綜上存在這樣的點,線段的長.【點睛】本題考查平面與平面垂直的判定定理的應用,考查利用線面所成角求參數(shù)問題,是幾何綜合題,考查空間想象力以及計算能力.20.(1)(2)【解析】試題分析:(1)由加減消元得直線的普通方程,由得圓的直角坐標方程;(2)把直線l的參數(shù)方程代入圓C的直角坐標方程,由直線參數(shù)方程幾何意義得|PA|+|PB|=|t1|+|t2|=t1+t2,再根據(jù)韋達定理可得結(jié)果試題解析:解:(Ⅰ)由得直線l的普通方程為x+y﹣3﹣=0又由得ρ2=2ρsinθ,化為直角坐標方程為x2+(y﹣)2=5;(Ⅱ)把直線l的參數(shù)方程代入圓C的直角坐標方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0設(shè)t1,t2是上述方程的兩實數(shù)根,所以t1+t2=3又直線l過點P,A、B兩點對應的參數(shù)分別為t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.21.(1)(2)【解析】
(1)利用極坐標和直角坐標的互化公式,,即可求得結(jié)果.(2)由的幾何意義得,.將代入拋物線C的方程,利用韋
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 施工現(xiàn)場施工防生物安全事故制度
- 小學生心理健康教育的校本課程設(shè)計研究
- DB4404T 72-2024電梯維修保養(yǎng)服務(wù)安全規(guī)范
- 不服合作合同爭議仲裁起訴狀范本
- 個人股權(quán)轉(zhuǎn)讓合作合同模板
- 兩人合伙創(chuàng)業(yè)合同范本
- 個人股權(quán)轉(zhuǎn)讓合同簡單范文
- 二手房買賣合同簡易版
- 個人公寓租賃合同范本
- 產(chǎn)學研一體化碩士專班合作協(xié)議合同
- 行業(yè)會計比較(第三版)PPT完整全套教學課件
- 值機業(yè)務(wù)與行李運輸實務(wù)(第3版)高職PPT完整全套教學課件
- 高考英語語法填空專項訓練(含解析)
- 42式太極劍劍譜及動作說明(吳阿敏)
- 部編版語文小學五年級下冊第一單元集體備課(教材解讀)
- GB/T 10095.1-2022圓柱齒輪ISO齒面公差分級制第1部分:齒面偏差的定義和允許值
- 仁愛英語九年級下冊單詞表(中英文)
- 危險化學品企業(yè)安全生產(chǎn)標準化課件
- 巨鹿二中骨干教師個人工作業(yè)績材料
- 《美的歷程》導讀課件
- 心電圖 (史上最完美)課件
評論
0/150
提交評論