2023年浙江交通職業(yè)技術學院高職單招(數學)試題庫含答案解析_第1頁
2023年浙江交通職業(yè)技術學院高職單招(數學)試題庫含答案解析_第2頁
2023年浙江交通職業(yè)技術學院高職單招(數學)試題庫含答案解析_第3頁
2023年浙江交通職業(yè)技術學院高職單招(數學)試題庫含答案解析_第4頁
2023年浙江交通職業(yè)技術學院高職單招(數學)試題庫含答案解析_第5頁
已閱讀5頁,還剩40頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年浙江交通職業(yè)技術學院高職單招(數學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.過點(-3,-1),且與直線x-2y=0平行的直線方程為______.答案:直線l經過點(-3,-1),且與直線x-2y=0平行,直線的斜率為12所以直線l的方程為:y+1=12(x+3)即x-2y+1=0.故為:x-2y+1=0.2.若將方程|(x-4)2+y2-(x+4)2+y2|=6化簡為x2a2-y2b2=1的形式,則a2-b2=______.答案:方程|(x-4)2+y2-(x+4)2+y2|=6,表示點(x,y)到(4,0),(-4,0)兩點距離差的絕對值為6,∴軌跡為以(4,0),(-4,0)為焦點的雙曲線,方程為x29-y27=1∴a2-b2=2故為:23.如果方程x2+(m-1)x+m2-2=0的兩個實根一個小于1,另一個大于1,那么實數m的取值范圍是()

A.

B.(-2,0)

C.(-2,1)

D.(0,1)答案:C4.已知z1=5+3i,z2=5+4i,下列各式中正確的是()A.z1>z2B.z1<z2C.|z1|>|z2|D.|z1|<|z2|答案:∵z1=5+3i,z2=5+4i,∴z1與z2為虛數,故不能比較大小,可排除A,B;又|z1|=34,|z2|=52+42=41,∴|z1|<|z2|,可排除C.故選D.5.直線y=3x+3的傾斜角的大小為______.答案:∵直線y=3x+3的斜率等于3,設傾斜角等于α,則0°≤α<180°,且tanα=3,∴α=60°,故為60°.6.將一個總體分為A、B、C三層,其個體數之比為5:3:2,若用分層抽樣的方法抽取容量為180的樣本,則應從C中抽取樣本的個數為______個.答案:由分層抽樣的定義可得應從B中抽取的個體數為180×25+3+2=36,故為:36.7.橢圓x2+my2=1的焦點在y軸上,長軸長是短軸長的兩倍,則m的值為()

A.

B.

C.2

D.4答案:A8.設F1,F2為定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=6,則動點M的軌跡是()A.橢圓B.直線C.圓D.線段答案:對于在平面內,若動點M到F1、F2兩點的距離之和等于6,而6正好等于兩定點F1、F2的距離,則動點M的軌跡是以F1,F2為端點的線段.故選D.9.設U={三角形},M={直角三角形},N={等腰三角形},則M∩N=______.答案:∵M={直角三角形},N={等腰三角形},∴M∩N={直角三角形且等腰三角形}={等腰直角三角形}故為{等腰直角三角形}10.方程x2+(m-2)x+5-m=0的兩根都大于2,則m的取值范圍是()

A.(-5,-4]

B.(-∞,-4]

C.(-∞,-2]

D.(-∞,-5)∪(-5,-4]答案:A11.給定點A(x0,y0),圓C:x2+y2=r2及直線l:x0x+y0y=r2,給出以下三個命題:

①當點A在圓C上時,直線l與圓C相切;

②當點A在圓C內時,直線l與圓C相離;

③當點A在圓C外時,直線l與圓C相交.

其中正確的命題個數是()

A.0

B.1

C.2

D.3答案:D12.把函數y=sin(x-)-2的圖象經過按平移得到y(tǒng)=sinx的圖象,則=(

A.

B.

C.

D.答案:A13.已知△ABC是邊長為2a的正三角形,那么它的斜二側所畫直觀圖△A′B′C′的面積為()

A.a2

B.a2

C.a2

D.a2答案:C14.(幾何證明選講選做題)如圖,已知四邊形ABCD內接于⊙O,且AB為⊙O的直徑,直線MN切

⊙O于D,∠MDA=45°,則∠DCB=______.答案:連接BD,∵AB為⊙O的直徑,直線MN切⊙O于D,∠MDA=45°,∴∠ABD=45°,∠ADB=90°,∴∠DCB=∠ABD+∠ADB=45°+90°=135°.故為:135°.15.某公司為慶祝元旦舉辦了一個抽獎活動,現場準備的抽獎箱里放置了分別標有數字1000、800﹑600、0的四個球(球的大小相同).參與者隨機從抽獎箱里摸取一球(取后即放回),公司即贈送與此球上所標數字等額的獎金(元),并規(guī)定摸到標有數字0的球時可以再摸一次﹐但是所得獎金減半(若再摸到標有數字0的球就沒有第三次摸球機會),求一個參與抽獎活動的人可得獎金的期望值是多少元.答案:設ξ表示摸球后所得的獎金數,由于參與者摸取的球上標有數字1000,800,600,0,當摸到球上標有數字0時,可以再摸一次,但獎金數減半,即分別為500,400,300,0.則ξ的所有可能取值為1000,800,600,500,400,300,0.依題意得P(ξ=1000)=P(ξ=800)=P(ξ=600)=14,P(ξ=500)=P(ξ=400)=P(ξ=300)=P(ξ=0)=116,則ξ的分布列為∴所求期望值為Eξ=14(1000+800+600)+116(500+400+300+0)=675元.16.若=(2,-3,1)是平面α的一個法向量,則下列向量中能作為平面α的法向量的是()

A.(0,-3,1)

B.(2,0,1)

C.(-2,-3,1)

D.(-2,3,-1)答案:D17.某商人將彩電先按原價提高40%,然后“八折優(yōu)惠”,結果是每臺彩電比原價多賺144元,那么每臺彩電原價是______元.答案:設每臺彩電原價是x元,由題意可得(1+40%)x?0.8-x=144,解得x=1200,故為1200.18.已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個底邊長為8,高為4的等腰三角形,左視圖是一個底邊長為6、高為4的等腰三角形.則該幾何體的體積為______.答案:由題意幾何體復原是一個底面邊長為8,6的距離,高為4,且頂點在底面的射影是底面矩形的中心的四棱錐.底面矩形的面積是48所以幾何體的體積是:13×46×4=64故為:64.19.從裝有兩個白球和兩個黃球的口袋中任取2個球,以下給出了三組事件:

①至少有1個白球與至少有1個黃球;

②至少有1個黃球與都是黃球;

③恰有1個白球與恰有1個黃球.

其中互斥而不對立的事件共有()組.

A.0

B.1

C.2

D.3答案:A20.已知M(x0,y0)是圓x2+y2=r2(r>0)內異于圓心的一點,則直線x0x+y0y=r2與此圓有何種位置關系?答案:圓心O(0,0)到直線x0x+y0y=r2的距離為d=r2x20+y20.∵P(x0,y0)在圓內,∴x20+y20<r.則有d>r,故直線和圓相離.21.已知曲線C的參數方程為x=4t2y=t(t為參數),若點P(m,2)在曲線C上,則m=______.答案:因為曲線C的參數方程為x=4t2y=t(t為參數),消去參數t得:x=4y2;∵點P(m,2)在曲線C上,所以m=4×4=16.故為:16.22.如圖,割線PAB經過圓心O,PC切圓O于點C,且PC=4,PB=8,則△PBC的外接圓的面積為______.答案:∵PC切圓O于點C,∴根據切割線定理即可得出PC2=PA?PB,∴42=8PA,解得PA=2.∴ACCB=PAPC=12∴tanB=12∴sinB=55設△PBC的外接圓的半徑為R,則455=2R,解得R=25.∴△PBC的外接圓的面積為20π故為:20π23.設a,b,c為正數,利用排序不等式證明a3+b3+c3≥3abc.答案:證明:不妨設a≥b≥c>0,∴a2≥b2≥c2,由排序原理:順序和≥反序和,得:a3+b3≥a2b+b2a,b3+c3≥b2c+c2b,c3+a3≥a2c+c2a三式相加得2(a3+b3+c3)≥a(b2+c2)+b(c2+a2)+c(a2+b2).又a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca.所以2(a3+b3+c3)≥6abc,∴a3+b3+c3≥3abc.當且僅當a=b=c時,等號成立.24.求證:答案:證明見解析解析:證明:此題采用了從第三項開始拆項放縮的技巧,放縮拆項時,不一定從第一項開始,須根據具體題型分別對待,即不能放的太寬,也不能縮的太窄,真正做到恰倒好處。25.若a>0,b>0,則不等式-b<aA.<x<0或0<x<

答案:D解析:試題分析:26.方程組的解集是(

)答案:{(5,-4)}27.

008年北京成功舉辦了第29屆奧運會,中國取得了51金、21銀、28銅的驕人成績.下表為北京奧運會官方票務網站公布的幾種球類比賽的門票價格,某球迷賽前準備用12000元預定15張下表中球類比賽的門票:

比賽項目

票價(元/場)

籃球

1000

足球

800

乒乓球

500

若在準備資金允許的范圍內和總票數不變的前提下,這個球迷想預定上表中三種球類門票,其中足球門票數與乒乓球門票數相同,且足球門票的費用不超過男籃門票的費用,則可以預訂男籃門票數為

A.2

B.3

C.4

D.5

答案:D28.命題“正數的絕對值等于它本身”的逆命題是______.答案:將命題“正數的絕對值等于它本身”改寫為“若一個數是正數,則其絕對值等于它本身”,所以逆命題是“若一個數的絕對值等于它本身,則這個數是正數”,即“絕對值等于它本身的數是正數”.故為:“絕對值等于它本身的數是正數”.29.如圖,菱形ABCD的對角線AC和BD相交于O點,E,F,G,H分別是AB,BC,CD,DA的中點,求證:E,F,G,H四個點在以O為圓心的同一個圓上.答案:連接OE,OF,OG,OH.∵四邊形ABCD為菱形,∴AB=BC=CD=DA,且BD⊥AC.∵E、F、GH分別為AB、BC、CD、DA的中點,∴OE=OF=OG=OH=12AB,∴E、F、G、H四點在以O為圓心,12AB為半徑的圓上.30.已知θ是三角形內角且sinθ+cosθ=,則表示答案:C31.函數f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和為a,則a的值為

______.答案:∵y=ax與y=loga(x+1)具有相同的單調性.∴f(x)=ax+loga(x+1)在[0,1]上單調,∴f(0)+f(1)=a,即a0+loga1+a1+loga2=a,化簡得1+loga2=0,解得a=12故為:1232.拋物線C:y=x2上兩點M、N滿足MN=12MP,若OP=(0,-2),則|MN|=______.答案:設M(x1,x12),N(x2,x22),則MN=(x2-x1,x22-x12)MP=(-x1,-2-x12).因為MN=12MP,所以(x2-x1,x22-x12)=12(-x1,-2-x12),即x2-x1=-12x1,x22-x12=12(-2-x12),所以x1=2x2,2x22=-2+x12,聯立解得:x2=1,x1=2或x2=-1,x1=-2即M(1,1),N(2,4)或M(-1,1),N(-2,4)所以|MN|=10故為10.33.橢圓x=3cosθy=4sinθ的離心率是______.答案:∵x=3cosθy=4sinθ,∴(x3)2+(y4)2=cos2θ+sin2θ=1,即x29+y216=1,其中a2=16,b2=9,故c2=a2-b2=16-9=7(a>0,b>0,c>0),∴其離心率e=ca=74.故為:74.34.已知點P為△ABC所在平面上的一點,且,其中t為實數,若點P落在△ABC的內部,則t的取值范圍是()

A.

B.

C.

D.答案:D35.為了檢查某超市貨架上的奶粉是否含有三聚氰胺,要從編號依次為1到50的袋裝奶粉中抽取5袋進行檢驗,用每部分選取的號碼間隔一樣的系統(tǒng)抽樣方法確定所選取的5袋奶粉的編號可能是()

A.5,10,15,20,25

B.2,4,8,16,32

C.1,2,3,4,5

D.7,17,27,37,47答案:D36.設函數f(x)的定義域為D,如果對于任意的x1∈D,存在唯一的x2∈D,使得

f(x1)+f(x2)2=C成立(其中C為常數),則稱函數y=f(x)在D上的均值為C,現在給出下列4個函數:①y=x3②y=4sinx③y=lgx④y=2x,則在其定義域上的均值為

2的所有函數是下面的()A.①②B.③④C.①③④D.①③答案:由題意可得,均值為2,則f(x1)+f(x2)2=2即f(x1)+f(x2)=4①:y=x3在定義域R上單調遞增,對應任意的x1,則存在唯一x2滿足x13+x23=4①正確②:y=4sinx,滿足4sinx1+4sinx2=4,令x1=π2,則根據三角函數的周期性可得,滿足sinx2=0的x2無窮多個,②錯誤③y=lgx在(0,+∞)單調遞增,對應任意的x1>0,則滿足lgx1+lgx2=4的x2唯一存在③正確④y=2x滿足2x1+2x2=4,令x1=3時x2不存在④錯誤故選D.37.甲、乙兩人破譯一種密碼,它們能破譯的概率分別為和,求:

(1)恰有一人能破譯的概率;(2)至多有一人破譯的概率;

(3)若要破譯出的概率為不小于,至少需要多少甲這樣的人?答案:(1)(2)(3)至少需4個甲這樣的人才能滿足題意.解析:(1)設A為“甲能譯出”,B為“乙能譯出”,則A、B互相獨立,從而A與、與B、與均相互獨立.“恰有一人能譯出”為事件,又與互斥,則(2)“至多一人能譯出”的事件,且、、互斥,∴(3)設至少需要n個甲這樣的人,而n個甲這樣的人譯不出的概率為,∴n個甲這樣的人能譯出的概率為,由∴至少需4個甲這樣的人才能滿足題意.38.(選做題)

設集合A={x|x2﹣5x+4>0},B={x|x2﹣2ax+(a+2)=0},若A∩B≠,求實數a的取值范圍.答案:解:A={x|x2﹣5x+4>0}={x|x<1或x>4}.∵A∩B≠,∴方程x2﹣2ax+(a+2)=0有解,且至少有一解在區(qū)間(﹣∞,1)∪(4,+∞)內直接求解情況比較多,考慮補集設全集U={a|△≥0}=(﹣∞,﹣1]∪[2,+∞),P={a|方程x2﹣2ax+(a+2)=0的兩根都在[1,4]內}記f(x)=x2﹣2ax+(a+2),且f(x)=0的兩根都在[1,4]內∴,∴,∴,∴∴實數a的取值范圍為.39.直線y=kx+1與橢圓x29+y24=1的位置關系是()A.相交B.相切C.相離D.不確定答案:∵直線y=kx+1過定點(0,1),把(0,1)代入橢圓方程的左端有0+14<1,即(0,1)在橢圓內部,∴直線y=kx+1與橢圓x29+y24=1必相交,

因此可排除B、C、D;

故選A.40.用秦九韶算法求多項式

在的值.答案:.解析:可根據秦九韶算法原理,將所給多項式改寫,然后由內到外逐次計算即可.

而,所以有,,,,,.即.【名師指引】利用秦九韶算法計算多項式值關鍵是能正確地將所給多項式改寫,然后由內到外逐次計算,由于后項計算需用到前項的結果,故應認真、細心,確保中間結果的準確性.41.已知A(4,1,9),B(10,-1,6),則A,B兩點間距離為______.答案:∵A(4,1,9),B(10,-1,6),∴A,B兩點間距離為|AB|=(10-4)2+(-1-1)2+(6-9)2=7故為:742.圖為一個幾何體的三視國科,尺寸如圖所示,則該幾何體的體積為()A.23+π6B.23+4πC.33+π6D.33+4π3答案:由圖中數據,下部的正三棱柱的高是3,底面是一個正三角形,其邊長為2,高為3,故其體積為3×12×2×3=33上部的球體直徑為1,故其半徑為12,其體積為4π3×(12)3=π6故組合體的體積是33+π6故選C43.4名同學分別報名參加學校的足球隊,籃球隊,乒乓球隊,每人限報其中的一個運動隊,不同報法的種數是()

A.34

B.43

C.24

D.12答案:A44.已知雙曲線的頂點到漸近線的距離為2,焦點到漸近線的距離為6,則該雙曲線的離心率為

______.答案:如圖,過雙曲線的頂點A、焦點F分別向其漸近線作垂線,垂足分別為B、C,則:|OF||OA|=|FC||AB|?ca=62=3.故為345.乘積(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)的展開式中,一共有多少項?答案:因為:從第一個括號中選一個字母有3種方法,從第二個括號中選一個字母有4種方法,從第三個括號中選一個字母有5種方法.故根據乘法計數原理可知共有N=3×4×5=60(項).46.在同一坐標系中,y=ax與y=a+x表示正確的是()A.

B.

C.

D.

答案:由y=x+a得斜率為1排除C,由y=ax與y=x+a中a同號知若y=ax遞增,則y=x+a與y軸的交點在y軸的正半軸上,由此排除B;若y=ax遞減,則y=x+a與y軸的交點在y軸的負半軸上,由此排除D,知A是正確的;故選A.47.已知橢圓的焦點是F1、F2,P是橢圓上的一個動點,如果延長F1P到Q,使得|PQ|=|PF2|,那么動點Q的軌跡是()

A.圓

B.橢圓

C.雙曲線的一支

D.拋物線答案:A48.已知函數①f(x)=3lnx;②f(x)=3ecosx;③f(x)=3ex;④f(x)=3cosx.其中對于f(x)定義域內的任意一個自變量x1都存在唯一個個自變量x2,使f(x1)f(x2)=3成立的函數序號是______.答案:根據題意可知:①f(x)=3lnx,x=1時,lnx沒有倒數,不成立;②f(x)=3ecosx,任一自變量f(x)有倒數,但所取x】的值不唯一,不成立;③f(x)=3ex,任意一個自變量,函數都有倒數,成立;④f(x)=3cosx,當x=2kπ+π2時,函數沒有倒數,不成立.所以成立的函數序號為③故為③49.若函數,則下列結論正確的是(

)A.,在上是增函數B.,在上是減函數C.,是偶函數D.,是奇函數答案:C解析:對于時有是一個偶函數50.A、B是直線l上的兩點,AB=4,AC⊥l于A,BD⊥l于B,AC=BD=3,又AC與BD成60°的角,則C、D兩點間的距離是______答案:CD=CA+AB+BD,|CD|=|

CA+AB+BD|,CD=32+32+42+2×

3×3cosθ,θ=120°或60°,CD=32+32+42±32.CD=5或43故為:5或43第2卷一.綜合題(共50題)1.直線x3+y4=1與x,y軸所圍成的三角形的周長等于()A.6B.12C.24D.60答案:直線x3+y4=1與兩坐標軸交于A(3,0),B(0,4),∴AB=5,∴△AOB的周長為:OA+OB+AB=3+4+5=12,故選B.2.(坐標系與參數方程選做題)過點(2,π3)且平行于極軸的直線的極坐標方程為______.答案:法一:先將極坐標化成直角坐標表示,(2,π3)化為(1,3),過(1,3)且平行于x軸的直線為y=3,再化成極坐標表示,即ρsinθ=3.法二:在極坐標系中,直接構造直角三角形由其邊角關系得方程ρsinθ=3.設A(ρ,θ)是直線上的任一點,A到極軸的距離AH=2sinπ3=3,直接構造直角三角形由其邊角關系得方程ρsinθ=3.故為:ρsinθ=33.已知直角三角形兩直角邊長為a,b,求斜邊長c的一個算法分下列三步:

①計算c=a2+b2;

②輸入直角三角形兩直角邊長a,b的值;

③輸出斜邊長c的值;

其中正確的順序是()A.①②③B.②③①C.①③②D.②①③答案:由算法規(guī)則得:第一步:輸入直角三角形兩直角邊長a,b的值,第二步:計算c=a2+b2,第三步:輸出斜邊長c的值;這樣一來,就是斜邊長c的一個算法.故選D.4.在Rt△ABC中,若∠C=90°,AC=b,BC=a,則△ABC外接圓半徑r=a2+b22.運用類比方法,若三棱錐的三條側棱兩兩互相垂直且長度分別為a,b,c,則其外接球的半徑R=______.答案:直角三角形外接圓半徑為斜邊長的一半,由類比推理可知若三棱錐的三條側棱兩兩互相垂直且長度分別為a,b,c,將三棱錐補成一個長方體,其外接球的半徑R為長方體對角線長的一半.故為a2+b2+c22故為:a2+b2+c225.不等式的解集是(

A.

B.

C.

D.答案:D6.在平面幾何里,我們知道,正三角形的外接圓和內切圓的半徑之比是2:1。拓展到空間,研究正四面體(四個面均為全等的正三角形的四面體)的外接球和內切球的半徑關系,可以得出的正確結論是:正四面體的外接球和內切球的半徑之比是(

)。答案:3:17.將程序補充完整

INPUT

x

m=xMOD2

IF______THEN

PRINT“x是偶數”

ELSE

PRINT“x是奇數”

END

IF

END.答案:本程序的作用是判斷出輸入的數是奇數還是偶數,由其邏輯關系知,若邏輯是“是”則輸出“x是偶數”,若邏輯是“否”,則輸出“x是奇數”故判斷條件應為m=0故為m=08.已知矩陣M=2a21,其中a∈R,若點P(1,-2)在矩陣M的變換下得到點P'(-4,0)

(1)求實數a的值;

(2)求矩陣M的特征值及其對應的特征向量.答案:(1)由2a211-2=-40,∴2-2a=-4?a=3.(2)由(1)知M=2321,則矩陣M的特征多項式為f(λ)=.λ-2-3-2λ-1.=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩陣M的特征值為-1與4.當λ=-1時,(λ-2)x-3y=0-2x+(λ-1)y=0?x+y=0∴矩陣M的屬于特征值-1的一個特征向量為1-1;當λ=4時,(λ-2)x-3y=0-2x+(λ-1)y=0?2x-3y=0∴矩陣M的屬于特征值4的一個特征向量為32.9.從裝有5只紅球和5只白球的袋中任意取出3只球,有如下幾對事件:

①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”;

②“取出兩只紅球和一只白球”與“取出3只紅球”;

③“取出3只紅球”與“取出的3只球中至少有一只白球”;

④“取出3只紅球”與“取出3只白球”.

其中是對立事件的有______(只填序號).答案:對于①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”,由于它們不能同時發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.對于②“取出兩只紅球和一只白球”與“取出3只紅球”,由于它們不能同時發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.對于③“取出3只紅球”與“取出的3只球中至少有一只白球”,它們不可能同時發(fā)生,而且它們的并事件是必然事件,故它們是對立事件.④“取出3只紅球”與“取出3只白球”.由于它們不能同時發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.故為③.10.已知空間四邊形ABCD中,M、G分別為BC、CD的中點,則等于()

A.

B.

C.

D.

答案:A11.若點M,A,B,C對空間任意一點O都滿足則這四個點()

A.不共線

B.不共面

C.共線

D.共面答案:D12.雙曲線x225-y29=1的兩個焦點分別是F1,F2,雙曲線上一點P到F1的距離是12,則P到F2的距離是()A.17B.7C.7或17D.2或22答案:由題意,a=5,則由雙曲線的定義可知PF1-PF2=±10,∴PF2=2或22,故選D.13.如圖所示,圓的內接△ABC的∠C的平分線CD延長后交圓于點E,連接BE,已知BD=3,CE=7,BC=5,則線段BE=()

A.

B.

C.

D.4

答案:B14.有50件產品編號從1到50,現在從中抽取抽取5件檢驗,用系統(tǒng)抽樣確定所抽取的編號為()

A.5,10,15,20,25

B.5,15,20,35,40

C.5,11,17,23,29

D.10,20,30,40,50答案:D15.已知A(3,4,5),B(0,2,1),O(0,0,0),若,則C的坐標是()

A.(-,-,-)

B.(,-,-)

C.(-,-,)

D.(,,)答案:A16.已知定點A(2,0),圓O的方程為x2+y2=8,動點M在圓O上,那么∠OMA的最大值是()

A.

B.

C.arccos

D.arccos答案:B17.教材中“坐標平面上的直線”與“圓錐曲線”兩章內容體現出解析幾何的本質是______.答案:這兩章的內容都是通過建立直角坐標系,用代數中的函數思想來解決圖形中的幾何性質.故為用代數的方法研究圖形的幾何性質解析:教材中“坐標平面上的直線”與“圓錐曲線”兩章內容體現出解析幾何的本質是______.18.如圖的曲線是指數函數y=ax的圖象,已知a的值取,,,則相應于曲線①②③④的a的值依次為()

A.,,,

B.,,,

C.,,,

D.,,,

答案:A19.已知實數a,b滿足等式2a=3b,下列五個關系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;

⑤a=b.其中可能成立的關系式有()

A.①②③

B.①②⑤

C.①③⑤

D.③④⑤答案:B20.點B是點A(1,2,3)在坐標平面yOz內的正投影,則|OB|等于()

A.

B.

C.

D.答案:B21.拋物線y=4x2的焦點坐標為()

A.(1,0)

B.(0,)

C.(0,1)

D.(,0)答案:B22.與

向量

=(2,-1,2)共線且滿足方程=-18的向量為()

A.不存在

B.-2

C.(-4,2,-4)

D.(4,-2,4)答案:D23.如果關于x的不等式|x-4|-|x+5|≥b的解集為空集,則實數b的取值范圍為______.答案:|x-4|-|x+5|的幾何意義就是數軸上的點到4的距離與到-5的距離的差,差的最大值為9,如果關于x的不等式|x-4|-|x+5|≥b的解集為空集,則實數b的取值范圍為b>9;故為:b>9.24.已知a,b是非零向量,且a,b夾角為π3,則向量p=a丨a丨+b丨b丨的模為______.答案:∵|a|a||=|a||a|=1=|b|b||,a?b=|a|

|b|cosπ3=12|a|

|b|∴p2=|(a|a|+b|b|)2=1+1+2?a|a|?b|b|=2+2×12=3,∴|p|=3.故為3.25.若定義在正整數有序對集合上的二元函數f滿足:①f(x,x)=x,②f(x,y)=f(y,x);③(x+y)f(x,y)=yf(x,x+y),則f(12,16)的值是()A.12B.16C.24D.48答案:依題意:∵(x+y)f(x,y)=yf(x,x+y),∴f(x,x+y)=1y(x+y)f(x,y)∴f(12,16)=f(12,12+4)=14(12+4)f(12,4)=4f(12,4)=4f(4,12)=4f(4,4+8)=4×18(4+8)f(4,8)=6f(4,8)=6f(4,4+4)=6×14(4+4)f(4,4)=12f(4,4)=12×4=48故選D26.已知a,b,c為正數,且兩兩不等,求證:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b).答案:證明:不妨設a>b>c>0,則(a-b)2>0,(b-c)2>0,(c-a)2>0.由于2(a3+b3+c3)-a2(b+c)+b2(a+c)+c2(a+b)=a2(a-b)+a2(a-c)+b2(b-c)+b2(b-a)+c2(c-a)+c2(c-b)

=(a-b)2(a+b)+(b-c)2(b+c)+(c-a)2(c+a)>0,故有2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)成立.27.

008年北京成功舉辦了第29屆奧運會,中國取得了51金、21銀、28銅的驕人成績.下表為北京奧運會官方票務網站公布的幾種球類比賽的門票價格,某球迷賽前準備用12000元預定15張下表中球類比賽的門票:

比賽項目

票價(元/場)

籃球

1000

足球

800

乒乓球

500

若在準備資金允許的范圍內和總票數不變的前提下,這個球迷想預定上表中三種球類門票,其中足球門票數與乒乓球門票數相同,且足球門票的費用不超過男籃門票的費用,則可以預訂男籃門票數為

A.2

B.3

C.4

D.5

答案:D28.已知a=log132,b=(13)12,c=(23)12,則a,b,c大小關系為______.答案:∵a=log132<log131=0,又∵函數y=x12在(0,+∞)是增函數,∴(23)12>(13)12>0.所以,c>b>a.故為c>b>a.29.已知矩陣A將點(1,0)變換為(2,3),且屬于特征值3的一個特征向量是11,(1)求矩陣A.(2)β=40,求A5β.答案:(1)設A=abcd,由abcd10=23得,a=2c=3,由abcd11=311=33得,a+b=3c+d=3,所以b=1d=0所以A=2130.

7分(2)A=2130的特征多項式為f(λ)=.λ-2-1-3λ.=

-3)(λ+1)令f(λ)=0,可得λ1=3,λ2=-1,λ1=3時,α1=11,λ2=-1時,α2=1-3令β=mα1+α2,則β=40=3α1+α2,A5β=3×35α1-α2=36-136+3…14分.30.能較好地反映一組數據的離散程度的是()

A.眾數

B.平均數

C.標準差

D.極差答案:C31.巳知橢圓{xn}與{yn}的中心在坐標原點,長軸在x軸上,離心率為32,且G上一點到G的兩個焦點的距離之和為12,則橢圓G的方程為______.答案:由題設知e=32,2a=12,∴a=6,b=3,∴所求橢圓方程為x236+y29=1.:x236+y29=1.32.中心在原點,焦點在x軸上的雙曲線的一條漸近線經過點(4,2),則它的離心率為()

A.

B.

C.

D.答案:D33.某車間工人已加工一種軸100件,為了了解這種軸的直徑,要從中抽出10件在同一條件下測量(軸的直徑要求為(20±0.5)mm),如何采用簡單隨機抽樣方法抽取上述樣本?答案:本題是一個簡單抽樣,∵100件軸的直徑的全體是總體,將其中的100個個體編號00,01,02,…,99,利用隨機數表來抽取樣本的10個號碼,可以從表中的第20行第3列的數開始,往右讀數,得到10個號碼如下:16,93,32,43,50,27,89,87,19,20將上述號碼的軸在同一條件下測量直徑.34.設F為拋物線y2=ax(a>0)的焦點,點P在拋物線上,且其到y(tǒng)軸的距離與到點F的距離之比為1:2,則|PF|等于()

A.

B.a

C.

D.答案:D35.設x,y,z∈R,且滿足:x2+y2+z2=1,x+2y+3z=14,則x+y+z=______.答案:根據柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14(x2+y2+z2)當且僅當x1=y2=z3時,上式的等號成立∵x2+y2+z2=1,∴(x+2y+3z)2≤14,結合x+2y+3z=14,可得x+2y+3z恰好取到最大值14∴x1=y2=z3=1414,可得x=1414,y=147,z=31414因此,x+y+z=1414+147+31414=3147故為:314736.已知實數x,y滿足2x+y+5=0,那么x2+y2的最小值為()A.5B.10C.25D.210答案:求x2+y2的最小值,就是求2x+y+5=0上的點到原點的距離的最小值,轉化為坐標原點到直線2x+y+5=0的距離,d=522+1=5.故選A.37.x+y+z=1,則2x2+3y2+z2的最小值為()

A.1

B.

C.

D.答案:C38.①某尋呼臺一小時內收到的尋呼次數X;

②長江上某水文站觀察到一天中的水位X;

③某超市一天中的顧客量X.

其中的X是連續(xù)型隨機變量的是()

A.①

B.②

C.③

D.①②③答案:B39.如圖,已知⊙O是△ABC的外接圓,AB是⊙O的直徑,D是AB延長線上一點,AE⊥DC交DC的延長線于點E,且AC平分∠EAB.

(1)求證:DE是⊙O的切線;

(2)若AB=6,AE=245,求BD和BC的長.答案:(1)證明:連接OC∵AC平分∠EAB∴∠EAC=∠BAC又在圓中OA=OC∴∠AC0=∠BAC∴∠EAC=∠ACO∴OC∥AE(內錯角相等,兩直線平行)則由AE⊥DC知OC⊥DC即DE是⊙O的切線.(2)∵∠D=∠D,∠E=∠OCD=90°∴△DCO∽△DEA∴BD=2∵Rt△EAC∽Rt△CAB.∴AC2=1445由勾股定理得BC=655.40.與函數y=x相等的函數是()A.f(x)=(x)2B.f(x)=x2xC.f(x)=x2D.f(x)=3x3答案:對于A,f(x)=x(x≥0),不符合;對于B,f(x)=x(x≠0),不符合;對于C,f(x)=|x|(x∈R),不符合;對于D,f(x)=x(x∈R),符合;故選D.41.已知圓C:x2+y2-4x-6y+12=0的圓心在點C,點A(3,5),求:

(1)過點A的圓的切線方程;

(2)O點是坐標原點,連接OA,OC,求△AOC的面積S.答案:(1)⊙C:(x-2)2+(y-3)2=1.當切線的斜率不存在時,對直線x=3,C(2,3)到直線的距離為1,滿足條件;當k存在時,設直線y-5=k(x-3),即y=kx+5-3k,∴|-k+2|k2+1=1,得k=34.∴得直線方程x=3或y=34x+114.(2)|AO|=9+25=34,l:5x-3y=0,d=134,S=12d|AO|=12.42.命題“當AB=AC時,△ABC是等腰三角形”與它的逆命題、否命題、逆否命題這四個命題中,真命題有______個.答案:原命題為真命題.逆命題“當△ABC是等腰三角形時,AB=AC”為假命題.否命題“當AB≠AC時,△ABC不是等腰三角形”為假命題.逆否命題“當△ABC不是等腰三角形時,AB≠AC”為真命題.故為:2.43.不等式-x≤1的解集是(

)。答案:{x|0≤x≤2}44.若拋物線y2=4x上一點P到其焦點的距離為3,則點P的橫坐標等于______.答案:∵拋物線y2=4x=2px,∴p=2,由拋物線定義可知,拋物線上任一點到焦點的距離與到準線的距離是相等的,∴|MF|=3=x+p2=3,∴x=2,故為:2.45.設集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M與P的關系為______.答案:由x+y<0,xy>0,?x<0,y<0.∴M=P.故為M=P.46.如圖,平行四邊形ABCD中,AE:EB=1:2,若△AEF的面積為6,則△ABC的面積為()A.18B.54C.64D.72答案:∵ABCD為平行四邊形∴AB平行于CD∴△AEF∽△CDF∵AE:EB=1:2∴AE:CD=AE:AB=1:3∴S△CDF=32×S△AEF=9×6=54∵AF:CF=AE:CD=1:3∴S△ADF=S△CDF÷3=54÷3=18∴S△ABC=S△ACD=S△CDF+S△ADF=54+18=72故選D47.已知圓C與直線x-y=0及x-y-4=0都相切,圓心在直線x+y=0上,則圓C的方程為()A.(x+1)2+(y-1)2=2B.(x-1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x+1)2+(y+1)2=2答案:圓心在x+y=0上,圓心的縱橫坐標值相反,顯然能排除C、D;驗證:A中圓心(-1,1)到兩直線x-y=0的距離是|2|2=2;圓心(-1,1)到直線x-y-4=0的距離是62=32≠2.故A錯誤.故選B.48.設O是平行四邊形ABCD的兩條對角線AC與BD的交點,對于下列向量組:①AD與AB;②DA與BC;③CA與DC;④OD與OB.其中能作為一組基底的是______(只填寫序號).答案:解析:由于①AD與AB不共線,③CA與DC不共線,所以都可以作為基底.②DA與BC共線,④OD與OB共線,不能作為基底.故為:①③.49.若P(2,-1)為曲線x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中點,則該弦所在直線的普通方程為______.答案:∵曲線x=1+5cosθy=5sinθ(0≤θ<2π),∴(x-1)2+y2=25,∵P(2,-1)為曲線x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中點,設過點P(2,-1)的弦與(x-1)2+y2=25交于A(x1,y1),B(x2,y2),則x1+x2=4y1+y2=-2,把A(x1,y1),B(x2,y2)代入(x-1)2+y2=25,得(x1-1)2+y

12=25(x2-1)2+y22=25,∴x12-2x1+1+y12=25,①x22-2x2+1+y22=25,②,①-②,得4(x1-x2)-2(x1-x2)-2(y1-y2)=0,∴k=y1-y2x1-x2=1,∴該弦所在直線的普通方程為y+1=x-2,即x-y-3=0.故為:x-y-3=0.50.已知正方體ABCD-A1B1C1D1中,M、N分別為BB1、C1D1的中點,建立適當的坐標系,求平面AMN的法向量.答案:(-3,2,-4)為平面AMN的一個法向量.解析:以D為原點,DA、DC、DD1所在直線為坐標軸建立空間直角坐標系.(如圖所示).設棱長為1,則A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).設平面AMN的法向量n=(x,y,z)∴令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).∴(-3,2,-4)為平面AMN的一個法向量.第3卷一.綜合題(共50題)1.如圖,已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且

DF=CF=2,AF:FB:BE=4:2:1.若CE與圓相切,則CE的長為.答案:設AF=4k,BF=2k,BE=k,由DF?FC=AF?BF,得2=8k2,即k=12,∴AF=2,BF=1,BE=12,AE=72,由切割定理得CE2=BE?EA=12×72=74∴CE=722.(x3+1xx)10的展開式中的第四項是______.答案:由二項式定理的通項公式可知(x3+1xx)10的展開式中的第四項是:C310(x3)7(1xx)3=120x16?x.故為:120x16?x.3.設a,b,c是正實數,求證:aabbcc≥(abc)a+b+c3.答案:證明:不妨設a≥b≥c>0,則lga≥lgb≥lgc.據排序不等式有:alga+blgb+clgc≥blga+clgb+algcalga+blgb+clgc≥clga+algb+blgcalga+blgb+clgc=alga+blgb+clgc上述三式相加得:3(alga+blgb+clgc)≥(a+b+c)(lga+lgb+lgc)即lg(aabbcc)≥a+b+c3lg(abc)故aabbcc≥(abc)a+b+c3.4.在班級隨機地抽取8名學生,得到一組數學成績與物理成績的數據:

數學成績6090115809513580145物理成績4060754070856090(1)計算出數學成績與物理成績的平均分及方差;

(2)求相關系數r的值,并判斷相關性的強弱;(r≥0.75為強)

(3)求出數學成績x與物理成績y的線性回歸直線方程,并預測數學成績?yōu)?10的同學的物理成績.答案:(1)計算出數學成績與物理成績的平均分及方差;.x=100,.y=65,數學成績方差為750,物理成績方差為306.25;(4分)(2)求相關系數r的值,并判斷相關性的強弱;r=6675≈0.94>0.75,相關性較強;(8分)(3)求出數學成績x與物理成績y的線性回歸直線方程,并預測數學成績?yōu)?10的同學的物理成績.y=0.6x+5,預測數學成績?yōu)?10的同學的物理成績?yōu)?1.(12分)5.已知隨機變量ξ服從正態(tài)分布N(1,δ2)(δ>0).若ξ在(0,1)內取值的概率為0.4,則ξ在(0,2)內取值的概率為(

A.

B.

C.

D.答案:D6.一只螞蟻在三邊邊長分別為3,4,5的三角形的邊上爬行,某時刻該螞蟻距離三角形的三個頂點的距離均超過1的概率為______.答案:如下圖所示,當螞蟻位于圖中紅色線段上時,距離三角形的三個頂點的距離均超過1,由已知易得:紅色線段的長度和為:6三角形的周長為:12故P=612=12故為:127.命題“存在x0∈R,2x0≤0”的否定是()

A.不存在x0∈R,2x0>0

B.存在x0∈R,2x0≥0

C.對任意的x∈R,2x≤0

D.對任意的x∈R,2x>0答案:D8.已知平行直線l1:x-y+1=0與l2:x-y+3=0,求l1與l2間的距離.答案:∵已知平行直線l1:x-y+1=0與l2:x-y+3=0,則l1與l2間的距離d=|3-1|2=2.9.對于一組數據的兩個函數模型,其殘差平方和分別為153.4

和200,若從中選取一個擬合程度較好的函數模型,應選殘差平方和為______的那個.答案:殘差的平方和是用來描述n個點與相應回歸直線在整體上的接近程度殘差的平方和越小,擬合效果越好,由于153.4<200,故擬合效果較好的是殘差平方和是153.4的那個模型.故為:153.4.10.由直角△ABC勾上一點D作弦AB的垂線交弦于E,交股的延長線于F,交外接圓于G,求證:EG為EA和EB的比例中項,又為ED和EF的比例中項.

答案:證明:連接GA、GB,則△AGB也是一個直角三角形,因為EG為直角△AGB的斜邊AB上的高,所以,EG為EA和EB的比例中項,即EG2=EA?EB∵∠AFE=∠ABC,∴直角△AEF∽直角△DEB,EAEF=EDEB即EA?EB=ED?EF.又∵EG2=EA?EB,∴EG2=ED?EF(等量代換),故EG也是ED和EF的比例中項.11.設隨機變量ξ的概率分布如表所示:

求:(l)P(ξ<1),P(ξ≤1),P(ξ<2),P(ξ≤2);

(2)P(x)=P(ξ≤x),x∈R.答案:(1)根據所給的分布列可知14+13+m+112=1,∴m=13,∴P(ξ<1)=0P(ξ≤1)=P(ξ=1)=14P(ξ<2)=P(ξ≤1)=P(ξ=1)=14P(ξ≤2)=P(ξ=1)+P(ξ=2)=14+13=712(2)根據所給的分布列和第一問做出的結果,得到P(X)=14,(x≤1)P(X)=712,(1<X≤2)P(X)=1112,(2<x≤3)p(X)=1,(X≥3)12.曲線x=t+1ty=12(t+1t)(t為參數)的直角坐標方程是______.答案:∵曲線C的參數方程x=t+1ty=12(t+1t)(t為參數)x=t+1t≥2,可得x的限制范圍是x≥2,再根據x2=t+1t+2,∴t+1t=x2-2,可得直角坐標方程是:x2=2(y+1),(x≥2),故為:x2=2(y+1),(x≥2).13.已知M(-2,7)、N(10,-2),點P是線段MN上的點,且PN=-2PM,則P點的坐標為______.答案:設P(x,y),則PN=(10-x,-2-y),PM=(-2-x,7-y),∵PN=-2PM,∴10-x=-2(-2-x)-2-y=-2(7-y),∴x=2y=4∴P點的坐標為(2,4).故為:(2,4)14.已知拋物線x2=4y上的點p到焦點的距離是10,則p點坐標是

______.答案:根據拋物線方程可求得焦點坐標為(0,1)根據拋物線定義可知點p到焦點的距離與到準線的距離相等,∴yp+1=10,求得yp=9,代入拋物線方程求得x=±6∴p點坐標是(±6,9)故為:(±6,9)15.對于各數互不相等的整數數組(i1,i2,i3,…in)

(n是不小于2的正整數),對于任意p,q∈1,2,3,…,n,當p<q時有ip>iq,則稱ip,iq是該數組的一個“逆序”,一個數組中所有“逆序”的個數稱為該數組的“逆序數”,則數組(2,4,3,1)中的逆序數等于______.答案:由題意知當p<q時有ip>iq,則稱ip,iq是該數組的一個“逆序”,一個數組中所有“逆序”的個數稱為該數組的“逆序數”,在數組(2,4,3,1)中逆序有2,1;4,3;4,1;3,1共有4對逆序數對,故為:4.16.直線x+y-1=0到直線xsinα+ycosα-1=0(<α<)的角是()

A.α-

B.-α

C.α-

D.-α答案:D17.若圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則()

A.k1<k2<k3

B.k2<k1<k3

C.k3<k2<k1

D.k1<k3<k2

答案:B18.如圖所示,有兩個獨立的轉盤(A)、(B),其中三個扇形區(qū)域的圓心角分別為60°、120°、180°.用這兩個轉盤玩游戲,規(guī)則是:依次隨機轉動兩個轉盤再隨機停下(指針固定不動,當指針恰好落在分界線時,則這次轉動無效,重新開始)為一次游戲,記轉盤(A)指針所對的數為X轉盤(B)指針對的數為Y設X+Yξ,每次游戲得到的獎勵分為ξ分.

(1)求X<2且Y>1時的概率

(2)某人玩12次游戲,求他平均可以得到多少獎勵分?答案:(1)由幾何概型知P(x=1)=16,P(x=2)=13,P(x=3)=12;

P(y=1)=13,P(y=2)=12,P(y=3)=16.則P(x<2)=P(x=1)=16,P(y>1)=p(y=2)+P(y=3)=23,P(x<2且y>1)=P(x<2)?P(y>1)=19.(2)ξ的取值范圍為2,3,4,6.P(ξ=2)=P(x=1)?P(y=1)=16×13=118;P(ξ=3)=P(x=1)?P(y=2)+P(x=2)?P(y=1)=16×12+13×13=736;P(ξ=4)=P(x=1)?P(y=3)+P(x=2)?P(y=2)+P(x=3)?P(y=1)=16×16+13×12+12×13=1336;P(ξ=5)=P(x=2)P(y=3)+P(x=3)P(y=2)=13×16+12×12=1136;P(ξ=6)=P(x=3)?P(y=3)=12×16=112.其分布為:ξ23456P11873613361136112他平均每次可得到的獎勵分為Eξ=2×118+3×736+4×1336+5×1136+6×112=256,所以,他玩12次平均可以得到的獎勵分為12×Eξ=50.19.點B是點A(1,2,3)在坐標平面yOz內的正投影,則|OB|等于()

A.

B.

C.

D.答案:B20.設隨機變量X~B(10,0.8),則D(2X+1)等于()

A.1.6

B.3.2

C.6.4

D.12.8答案:C21.已知斜二測畫法得到的直觀圖△A′B′C′是正三角形,畫出原三角形的圖形.答案:由斜二測法知:B′C′不變,即BC與B′C′重合,O′A′由傾斜45°變?yōu)榕cx軸垂直,并且O′A′的長度變?yōu)樵瓉淼?倍,得到OA,由此得到原三角形的圖形ABC.22.如圖,有兩條相交成π3角的直線EF,MN,交點是O.一開始,甲在OE上距O點2km的A處;乙在OM距O點1km的B處.現在他們同時以2km/h的速度行走.甲沿EF的方向,乙沿NM的方向.設與OE同向的單位向量為e1,與OM同向的單位向量為e2.

(1)求e1,e2;

(2)若過2小時后,甲到達C點,乙到達D點,請用e1,e2表示CD;

(3)若過t小時后,甲到達G點,乙到達H點,請用e1,e2表示GH;

(4)什么時間兩人間距最短?答案:(1)由題意可得e1=12OA,e2=OB,(2)若過2小時后,甲到達C點,乙到達D點,則OC=-2e1,OD=5e2,故CD=OD-OC=2e1+5e2,(3)同(2)可得:經過t小時后,甲到達G點,乙到達H點,則OG=(-2t+2)e1,OH=(2t+1)e2,故GH=OH-OG=(2t-2)e1+(2t+1)e2,(4)由(3)可得GH=(2t-2)e1+(2t+1)e2,故兩人間距離y=|GH|=[(2t-2)e1+(2t+1)e2]2=(2t-2)2+(2t+1)2+2(2t-2)(2t+1)×12=12t2-6t+3,由二次函數的知識可知,當t=--62×12=14時,上式取到最小值32,故14時兩人間距離最短.23.已知e1

,

e2是夾角為60°的兩個單位向量,且向量a=e1+2e2,則|a|=______.答案:由題意可得e21=1,e22=1,e1?e2=12,所以a2=(e1+2e2)2=1+2+4=7,所以|a|=7,故為:724.已知0<α<π2,方程x2sinα+y2cosα=1表示焦點在y軸上的橢圓,則α的取值范圍______.答案:方程x2sinα+y2cosα=1化成標準形式得:x21sinα+y21cosα=1.∵方程表示焦點在y軸上的橢圓,∴1cosα>1sinα>0,解之得sinα>cosα>0∵0<α<π2,∴π4<α<π2,即α的取值范圍是(π4,π2)故為:(π4,π2)25.集合{x∈N*|

12

x

∈Z}中含有的元素個數為()

A.4

B.6

C.8

D.12答案:B26.賦值語句M=M+3表示的意義()

A.將M的值賦給M+3

B.將M的值加3后再賦給M

C.M和M+3的值相等

D.以上說法都不對答案:B27.如圖,已知雙曲線以長方形ABCD的頂點A,B為左、右焦點,且過C,D兩頂點.若AB=4,BC=3,則此雙曲線的標準方程為______.答案:由題意可得點OA=OB=2,AC=5設雙曲線的標準方程是x2a2-y2b2=1.則2a=AC-BC=5-3=2,所以a=1.所以b2=c2-a2=4-1=3.所以雙曲線的標準方程是x2-y23=1.故為:x2-y23=128.已知100件產品中有5件次品,從中任意取出3件產品,設A表示事件“3件產品全不是次品”,B表示事件“3件產品全是次品”,C表示事件“3件產品中至少有1件次品”,則下列結論正確的是()

A.B與C互斥

B.A與C互斥

C.任意兩個事件均互斥

D.任意兩個事件均不互斥答案:B29.給定橢圓C:x2a2+y2b2=1(a>b>0),稱圓心在原點O、半徑是a2+b2的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為F(2,0),其短軸的一個端點到點F的距離為3.

(1)求橢圓C和其“準圓”的方程;

(2)過橢圓C的“準圓”與y軸正半軸的交點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,求l1,l2的方程;

(3)若點A是橢圓C的“準圓”與x軸正半軸的交點,B,D是橢圓C上的兩相異點,且BD⊥x軸,求AB?AD的取值范圍.答案:(1)由題意可得:a=3,c=2,b=1,∴r=(3)2+12=2.∴橢圓C的方程為x23+y2=1,其“準圓”的方程為x2+y2=4;(2)由“準圓”的方程為x2+y2=4,令y=0,解得x=±2,取P(2,0),設過點P且與橢圓相切的直線l的方程為my=x-2,聯立my=x-2x23+y2=1,消去x得到關于y的一元二次方程(3+m2)x2+4m+1=0,∴△=16m2-4(3+m2)=0,解得m=±1,故直線l1、l2的方程分別為:y=x-2,y=-x+2.(3)由“準圓”的方程為x2+y2=4,令y=0,解得x=±2,取點A(2,0).設點B(x0,y0),則D(x0,-y0).∴AB?AD=(x0-2,y0)?(x0-2,-y0)=(x0-2)2-y02,∵點B在橢圓x23+y2=1上,∴x023+y02=1,∴y02=1-x023,∴AD?AB=(x0-2)2-1+x023=43(x0-32)2,∵-3<x0<3,∴0≤43(x0-32)2<7+43,∴0≤AD?AB<7+43,即AD?AB的取值范圍為[0,7+43)30.設二項式(33x+1x)n的展開式的各項系數的和為P,所有二項式系數的和為S,若P+S=272,則n=()A.4B.5C.6D.8答案:根據題意,對于二項式(33x+1x)n的展開式的所有二項式系數的和為S,則S=2n,令x=1,可得其展開式的各項系數的和,即P=4n,結合題意,有4n+2n=272,解可得,n=4,故選A.31.命題“存在x∈Z使x2+2x+m≤0”的否定是()

A.存在x∈Z使x2+2x+m>0

B.不存在x∈Z使x2+2x+m>0

C.對任意x∈Z使x2+2x+m≤0

D.對任意x∈Z使x2+2x+m>0答案:D32.設a、b為單位向量,它們的夾角為90°,那么|a+3b|等于()A.7B.10C.13D.4答案:∵a,b它們的夾角為90°∴a?b=0∴(a+3b)2=a2+6a?b+9

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論