版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年鄭州電力高等??茖W校高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.設0<a<1,m=loga(a2+1),n=loga(a+1),p=loga(2a),則m,n,p的大小關系是()A.n>m>pB.m>p>nC.m>n>pD.p>m>n答案:取a=0.5,則a2+1、a+1、2a的大小分別為:1.25,1.5,1,又因為0<a<1時,y=logax為減函數(shù),所以p>m>n故選D2.設a、b、c均為正數(shù).求證:≥.答案:證明略解析:證明
方法一
∵+3=="(a+b+c)"=[(a+b)+(a+c)+(b+c)]≥
(·+·+·)2=.∴+≥.方法二
令,則∴左邊=≥=.∴原不等式成立.3.等于()
A.
B.
C.
D.答案:B4.中心在原點,焦點在x軸上的雙曲線的一條漸近線經(jīng)過點(4,2),則它的離心率為()
A.
B.
C.
D.答案:D5.一個口袋內(nèi)有5個白球和3個黑球,任意取出一個,如果是黑球,則這個黑球不放回且另外放入一個白球,這樣繼續(xù)下去,直到取出的球是白球為止.求取到白球所需的次數(shù)ξ的概率分布列及期望.答案:由題意知變量的可能取值是1,2,3,4P(ξ=1)=58,P(ξ=2)=932,P(ξ=3)=21256
P(ξ=1)=3256
∴ξ的分布列是ξ1234P58932212563256∴Eξ=1×58+2×923+3×21256+4×3256=3792566.頻率分布直方圖的重心是()
A.眾數(shù)
B.中位數(shù)
C.標準差
D.平均數(shù)答案:D7.將函數(shù)的圖象F按向量平移后所得到的圖象的解析式是,求向量.答案:向量解析:將函數(shù)的圖象F按向量平移后所得到的圖象的解析式是,求向量.8.不等式|x-2|+|x+1|<5的解集為()
A.(-∞,-2)∪(3,+∞)
B.(-∞,-1)∪(2,+∞)
C.(-2,3)
D.(-∞,+∞)答案:C9.某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表:
廣告費用x(萬元)
2
3
4
5
銷售額y(萬元)
27
39
48
54
根據(jù)上表可得回歸方程y=bx+a中的b為9.4,據(jù)此模型預報廣告費用為6萬元時銷售額為()
A.65.5萬元
B.66.2萬元
C.67.7萬元
D.72.0萬元答案:A10.某校有初中學生1200人,高中學生900人,教師120人,現(xiàn)用分層抽樣方法從所有師生中抽取一個容量為n的樣本進行調(diào)查,如果從高中學生中抽取60人,那么n=______.答案:每個個體被抽到的概率等于60900=115.故n=(1200+900+120)×115=1220×115=148,故為:148.11.已知雙曲線的a=5,c=7,則該雙曲線的標準方程為()
A.-=1
B.-=1
C.-=1或-=1
D.-=0或-=0答案:C12.(a+b)6的展開式的二項式系數(shù)之和為______.答案:根據(jù)二項式系數(shù)的性質(zhì):二項式系數(shù)和為2n所以(a+b)6展開式的二項式系數(shù)之和等于26=64故為:64.13.以過橢圓+=1(a>b>0)的右焦點的弦為直徑的圓與直線l:x=的位置關系是()
A.相交
B.相切
C.相離
D.不能確定答案:C14.雙曲線C的焦點在x軸上,離心率e=2,且經(jīng)過點P(2,3),則雙曲線C的標準方程是______.答案:設雙曲線C的標準方程x2a2-y2b2=1,∵經(jīng)過點P(2,3),∴2a2-3b2=1
①,又∵e=2=a2+b2a
②,由①②聯(lián)立方程組并解得
a2=1,b2=3,雙曲線C的標準方程是x2-y23=1,故為:x2-y23=1.15.將一根長為3m的繩子在任意位置剪斷,則剪得兩段的長都不小于1m的概率是()A.14B.13C.12D.23答案:記“兩段的長都不小于1m”為事件A,則只能在中間1m的繩子上剪斷,剪得兩段的長都不小于1m,所以事件A發(fā)生的概率
P(A)=13.故選B16.已知f(x)=2x,g(x)=3x.
(1)當x為何值時,f(x)=g(x)?
(2)當x為何值時,f(x)>1?f(x)=1?f(x)<1?
(3)當x為何值時,g(x)>3?g(x)=3?g(x)<3?答案:(1)作出函數(shù)f(x),g(x)的圖象,如圖所示.∵f(x),g(x)的圖象都過點(0,1),且這兩個圖象只有一個公共點,∴當x=0時,f(x)=g(x)=1.(2)由圖可知,當x>0時,f(x)>1;當x=0時,f(x)=1;當x<0時,f(x)<1.(3)由圖可知:當x>1時,g(x)>3;當x=1時,g(x)=3;當x<1時,g(x)<3.17.棱長為2的正方體ABCD-A1B1C1D1中,BC1?B1D1=()A.22B.4C.-22D.-4答案:棱長為2的正方體ABCD-A1B1C1D1中,BC1與
B1D1的夾角等于BC1與BD的夾角,等于60°.∴BC1?B1D1=22×22cos60°=4,故選B.18.已知α、β均為銳角,若p:sinα<sin(α+β),q:α+β<π2,則p是q的()A.充分而不必要條件B.必要而不充分條件C.充要條件D.既不充分也不必要條件答案:當sinα<sin(α+β)時,α+β<π2不一定成立故sinα<sin(α+β)?α+β<π2,為假命題;而若α+β<π2,則由正弦函數(shù)在(0,π2)單調(diào)遞增,易得sinα<sin(α+β)成立即α+β<π2?sinα<sin(α+β)為真命題故p是q的必要而不充分條件故選B.19.已知實數(shù)x,y滿足2x+y+5=0,那么x2+y2的最小值為()A.5B.10C.25D.210答案:求x2+y2的最小值,就是求2x+y+5=0上的點到原點的距離的最小值,轉(zhuǎn)化為坐標原點到直線2x+y+5=0的距離,d=522+1=5.故選A.20.用反證法證明命題:“三角形的內(nèi)角中至少有一個不大于60度”時,假設正確的是()
A.假設三內(nèi)角都不大于60度
B.假設三內(nèi)角都大于60度
C.假設三內(nèi)角至多有一個大于60度
D.假設三內(nèi)角至多有兩個大于60度答案:B21.已知一種材料的最佳加入量在100g到200g之間,若用0.618法安排試驗,則第一次試點的加入量可以是(
)g。答案:161.8或138.222.若(1+2)5=a+b2(a,b為有理數(shù)),則a+b=()A.45B.55C.70D.80答案:解析:由二項式定理得:(1+2)5=1+C512+C52(2)2+C53(2)3+C54(2)4+C55?(2)5=1+52+20+202+20+42=41+292,∴a=41,b=29,a+b=70.故選C23.過點P(-3,0)且傾斜角為30°的直線和曲線x=t+1ty=t-1t(t為參數(shù))相交于A,B兩點.求線段AB的長.答案:直線的參數(shù)方程為
x
=
-3
+
32sy
=
12s
(s
為參數(shù)),曲線x=t+1ty=t-1t
可以化為
x2-y2=4.將直線的參數(shù)方程代入上式,得
s2-63s+
10
=
0.設A、B對應的參數(shù)分別為s1,s2,∴s1+
s2=
6
3,s1?s2=10.∴AB=|s1-s2|=(s1+s2)2-4s1s2=217.24.棱長為a的正四面體中,AB?BC+AC?BD=______.答案:棱長為a的正四面體中,AB=BC=a,且AB與BC的夾角為120°,AC⊥BD.∴AB?BC+AC?BD=a?acos120°+0=-a22,故為:-12.25.已知200輛汽車通過某一段公路時的時速的頻率分布直方圖如圖所示,則時速在[60,70]的汽車大約有()輛.A.90B.80C.70D.60答案:由已知可得樣本容量為200,又∵數(shù)據(jù)落在區(qū)間[60,70]的頻率為0.04×10=0.4∴時速在[60,70]的汽車大約有200×0.4=80故選B.26.某廠2011年的產(chǎn)值為a萬元,預計產(chǎn)值每年以7%的速度增加,則該廠到2022年的產(chǎn)值為______萬元.答案:2011年產(chǎn)值為a,增長率為7%,2012年產(chǎn)值為a+a×7%=a(1+7%),2013年產(chǎn)值為a(1+7%)+a(1+7%)×7%=a(1+7%)2,…,2022年的產(chǎn)值為a(1+7%)11.故為:a(1+7%)11.27.已知x∈R,i為虛數(shù)單位,若(x-2)i-1-i為純虛數(shù),則x的值為()A.1B.-1C.2D.-2答案:(x-2)i-1-i=[(x-2)i-1]?i-i?i=(x-2)i2-i=(2-x)-i由純虛數(shù)的定義可得2-x=0,故x=2故選C28.如圖,△ABC是圓的內(nèi)接三角形,PA切圓于點A,PB交圓于點D.若∠ABC=60°,PD=1,BD=8,則∠PAC=______°,PA=______.答案:∵PD=1,BD=8,∴PB=PD+BD=9由切割線定理得PA2=PD?PB=9∴PA=3又∵PE=PA∴PE=3又∠PAC=∠ABC=60°故:60,329.已知離散型隨機變量X服從二項分布X~B(n,p)且E(X)=3,D(X)=2,則n與p的值分別為()
A.
B.
C.
D.答案:B30.設隨機變量ξ服從正態(tài)分布N(μ,σ2),且函數(shù)f(x)=x2+4x+ξ沒有零點的概率為,則μ為()
A.1
B.4
C.2
D.不能確定答案:B31.已知斜二測畫法得到的直觀圖△A′B′C′是正三角形,畫出原三角形的圖形.答案:由斜二測法知:B′C′不變,即BC與B′C′重合,O′A′由傾斜45°變?yōu)榕cx軸垂直,并且O′A′的長度變?yōu)樵瓉淼?倍,得到OA,由此得到原三角形的圖形ABC.32.下列向量組中,能作為表示它們所在平面內(nèi)所有向量的基底的是()A.a(chǎn)=(0,0),b=(1,-2)B.a(chǎn)=(1,-2),b=(2,-4)C.a(chǎn)=(3,5),b=(6,10)D.a(chǎn)=(2,-3),b=(6,9)答案:可以作為基底的向量需要是不共線的向量,A中一個向量是零向量,兩個向量共線,不合要求B中兩個向量是a=12b,兩個向量共線,C項中的兩個向量也共線,故選D.33.某化肥廠甲、乙兩個車間包裝肥料,在自動包裝傳送帶上每隔30min抽取一包產(chǎn)品,稱其重量,分別記錄抽查數(shù)據(jù)如下:
甲:86、72、92、78、77;
乙:82、91、78、95、88
(1)這種抽樣方法是哪一種?
(2)將這兩組數(shù)據(jù)用莖葉圖表示;
(3)將兩組數(shù)據(jù)比較,說明哪個車間產(chǎn)品較穩(wěn)定.答案:(1)因為間隔時間相同,故是系統(tǒng)抽樣.(2)莖葉圖如下:.(3)因為.x甲=15(86+72+92+78+77)=81,.x乙=15(82+92+78+95+88)=87,所以s甲2=15(52+92+92+72+42)=50.4,s乙2=15(52+52+92+82+12)=39.2,而s甲2>s乙2,所以乙車間產(chǎn)品較穩(wěn)定.34.化簡5(2a-2b)+4(2b-2a)=______.答案:5(2a-2b)+4(2b-2a)=10a-10b+8b-8a=2a-2b故為:2a-2b35.在直角坐標系xOy中,i,j分別是與x軸,y軸平行的單位向量,若在Rt△ABC中,AB=i+j,AC=2i+mj,則實數(shù)m=______.答案:把AB、AC平移,使得點A與原點重合,則AB=(1,1)、AC=(2,m),故BC=(1,m-1),若∠B=90°時,AB?BC=0,∴(1,1)?(2-1,m-1)=0,得m=0;若∠A=90°時,AB?AC=0,∴(1,1)?(2,m)=0,得m=-2.若∠C=90°時,AC?BC=0,即2+m2-m=0,此方程無解,綜上,m為-2或0滿足三角形為直角三角形.故為-2或036.△ABC所在平面內(nèi)點O、P,滿足OP=OA+λ(AB+12BC),λ∈[0,+∞),則點P的軌跡一定經(jīng)過△ABC的()A.重心B.垂心C.內(nèi)心D.外心答案:設BC的中點為D,則∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中線∴點P的軌跡一定經(jīng)過△ABC的重心故選A.37.過拋物線y2=4x的焦點作一條直線與拋物線相交于A、B兩點,它們的橫坐標之和等于5,則這樣的直線()
A.有且僅有一條
B.有且僅有兩條
C.有無窮多條
D.不存在答案:B38.若點P(-1,3)在圓x2+y2=m2上,則實數(shù)m=______.答案:∵點P(-1,3)在圓x2+y2=m2上,∴點P坐標代入,得(-1)2+(3)2=m2,即m2=4,解之得m=±2.故為:±239.參數(shù)方程表示什么曲線?答案:見解析解析:解:顯然,則即得,即40.若A、B兩點的極坐標為A(4
,
π3),B(6,0),則AB中點的極坐標是
______(極角用反三角函數(shù)值表示)答案:A的直角坐標為:(2,23),所以AB的中點坐標為:(4,3)所以極徑為:19;極角為:α,tanα=34所以α=arctan34;AB中點的極坐標是:(19,
arctan34)故為:(19,
arctan34)41.若動點P到兩個定點F1(-1,0)、F2(1,0)的距離之差的絕對值為定值a(0≤a≤2),試求動點P的軌跡.答案:①當a=0時,||PF1|-|PF2||=0,從而|PF1|=|PF2|,所以點P的軌跡為直線:線段F1F2的垂直平分線.②當a=2時,||PF1|-|PF2||=2=|F1F2|,所以點P的軌跡為兩條射線.③當0<a<2時,||PF1|-|PF2||=a<|F1F2|,所以點P的軌跡是以F1、F2為焦點的雙曲線.42.函數(shù)y=f(x)的圖象如圖所示,在區(qū)間[a,b]上可找到n(n≥2)個不同的數(shù)x1,x2,…xn,使得f(x1)x1=f(x2)x2=…=f(xn)xn,則n的取值范圍為()A.{2,3}B.{2,3,4}C.{3,4}D.{3,4,5}答案:令y=f(x),y=kx,作直線y=kx,可以得出2,3,4個交點,故k=f(x)x(x>0)可分別有2,3,4個解.故n的取值范圍為2,3,4.故選B.43.P是以F1,F(xiàn)2為焦點的橢圓上一點,過焦點F2作∠F1PF2外角平分線的垂線,垂足為M,則點M的軌跡是()
A.橢圓
B.圓
C.雙曲線
D.雙曲線的一支答案:B44.集合M={(x,y)|xy≤0,x,y∈R}的意義是()A.第二象限內(nèi)的點集B.第四象限內(nèi)的點集C.第二、四象限內(nèi)的點集D.不在第一、三象限內(nèi)的點的集合答案:∵xy≤0,∴xy<0或xy=0當xy<0時,則有x<0y>0或x>0y<0,點(x,y)在二、四象限,當xy=0時,則有x=0或y=0,點(x,y)在坐標軸上,故選D.45.若a>0,b<0,直線y=ax+b的圖象可能是()
A.
B.
C.
D.
答案:C46.以下四組向量中,互相平行的是.()
(1)=(1,2,1),=(1,-2,3);
(2)=(8,4,-6),=(4,2,-3);
(3)=(0,1,-1),=(0,-3,3);
(4)=(-3,2,0),=(4,-3,3).
A.(1)(2)
B.(2)(3)
C.(2)(4)
D.(1)(3)答案:B47.點O是△ABC內(nèi)一點,若+=-,則是S△AOB:S△AOC=()
A.1
B.
C.
D.答案:A48.設點P對應的復數(shù)為-3+3i,以原點為極點,實軸正半軸為極軸建立極坐標系,則點P的極坐標為()
A.(3,π)
B.(-3,π)
C.(3,π)
D.(-3,π)答案:A49.將參數(shù)方程x=1+2cosθy=2sinθ(θ為參數(shù))化成普通方程為
______.答案:由題意得,x=1+2cosθy=2sinθ?x-1=2cosθy=2sinθ,將參數(shù)方程的兩個等式兩邊分別平方,再相加,即可消去含θ的項,所以有(x-1)2+y2=4.50.直線(t為參數(shù))的傾斜角是()
A.20°
B.70°
C.45°
D.135°答案:D第2卷一.綜合題(共50題)1.如果拋物線y2=a(x+1)的準線方程是x=-3,那么這條拋物線的焦點坐標是()A.(3,0)B.(2,0)C.(1,0)D.(-1,0)答案:拋物線y2=a(x+1)可由拋物線y2=ax向左平移一個單位長度得到,因為拋物線y2=a(x+1)的準線方程是x=-3,所以拋物線y2=ax的準線方程是x=-2,且焦點坐標為(2,0),那么拋物線y2=a(x+1)的焦點坐標為(1,0).故選C.2.若平面向量a與b的夾角為120°,a=(2,0),|b|=1,則|a+2b|=______.答案:∵|a+2b|=(a+2b)2=a
2+4a?b+4
b2=|a|2+4|a||b|cos<a,b>+4|b|2=22+4×2×1cos120°+4×1=2.故為:23.如圖所示,已知A、B、C三點不共線,O為平面ABC外的一點,若點M滿足
(1)判斷三個向量是否共面;
(2)判斷點M是否在平面ABC內(nèi).答案:解:(1)由已知,得,∴向量共面.(2)由(1)知向量共面,三個向量的基線又有公共點M,∴M、A、B、C共面,即點M在平面ABC內(nèi),4.如圖所示,在Rt△ABC內(nèi)有一內(nèi)接正方形,它的一條邊在斜邊BC上,設AB=a,∠ABC=θ
(1)求△ABC的面積f(θ)與正方形面積g(θ);
(2)當θ變化時,求f(θ)g(θ)的最小值.答案:(1)由題得:AC=atanθ∴f(θ)=12a2tanθ(0<θ<π2)
設正方形的邊長為x,則BG=xsinθ,由幾何關系知:∠AGD=θ∴AG=xcosθ
由BG+AG=a?xsinθ+xcosθ=a?x=asinθ1+sinθcosθ∴g(θ)=a2sin2θ(1+sinθcosθ)2(0<θ<π2)(2)f(θ)g(θ)=(1+sinθcoθ)22sinθcosθ=1+1sin2θ+sin2θ4
令:t=sin2θ∵0<θ<π2∴t∈(0,1]∴y=1+1t+t4=1+14(t+t4)∵函數(shù)y=1+14(t+t4)在(0,1]遞減∴ymin=94(當且僅當t=1即θ=π4時成立)∴當θ=π4時,f(θ)g(θ)的最小值為94.5.對于函數(shù)f(x),在使f(x)≤M成立的所有常數(shù)M中,我們把M的最小值稱為函數(shù)f(x)的“上確界”則函數(shù)f(x)=(x+1)2x2+1的上確界為()A.14B.12C.2D.4答案:因為f(x)=(x+1)2x2+1=x2+2x+1x2+1=1+2xx2+1又因為x2+1=|x|2+1≥2|x|≥2x∴2xx2+1≤1.∴f(x)≤2.即在使f(x)≤M成立的所有常數(shù)M中,M的最小值為2.故選C.6.a、b、c∈R,則下列命題為真命題的是______.
①若a>b,則ac2>bc2
②若ac2>bc2,則a>b
③若a<b<0,則a2>ab>b2
④若a<b<0,則1a<1b.答案:當c=0時,ac2=bc2,故①不成立;若ac2>bc2,則c2≠0,即c2>0,則a>b,故②成立;若a<b<0,則a2>ab且ab>b2,故a2>ab>b2,故③成立;若a<b<0,則ab>0,故aab<bab,即1a>1b,故④不成立故②③為真命題故為:②③7.為了了解學校學生的身體發(fā)育情況,抽查了該校100名高中男生的體重情況,根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖如圖所示,根據(jù)此圖,估計該校2000名高中男生中體重大于70.5公斤的人數(shù)為()
A.300B.350C.420D.450答案:∵由圖得,∴70.5公斤以上的人數(shù)的頻率為:(0.04+0.035+0.016)×2=0.181,∴70.5公斤以上的人數(shù)為2000×0.181=362,故選B8.命題“存在x0∈R,使x02+1<0”的否定是______.答案:∵命題“存在x0∈R,使x02+1<0”是一個特稱命題∴命題“存在x0∈R,使x02+1<0”的否定是“對任意x0∈R,使x02+1≥0”故為:對任意x0∈R,使x02+1≥09.在平面直角坐標系xOy中,若拋物線C:x2=2py(p>0)的焦點為F(q,1),則p+q=______.答案:拋物線C:x2=2py(p>0)的焦點坐標為(0,p2),又已知焦點為為F(q,1),∴q=0,p2=1,故p+q=2,故為2.10.若直線l的方程為x=2,則該直線的傾斜角是()A.60°B.45°C.90°D.180°答案:∵直線l的方程為x=2∴直線l與x軸垂直∴直線l的傾斜角為90°故選C11.“x=2kπ+π4(k∈Z)”是“tanx=1”成立的()A.充分不必要條件B.必要不充分條件C.充分條件D.既不充分也不必要條件答案:tan(2kπ+π4)=tanπ4=1,所以充分;但反之不成立,如tan5π4=1.故選A12.兩圓相交于點A(1,3)、B(m,-1),兩圓的圓心均在直線x-y+c=0上,則m+c的值為(
)
A.3
B.2
C.-1
D.0答案:A13.(1)若三條直線2x+3y+8=0,x-y-1=0和x+ky=0相交于一點,則k的值為?
(2)若α∈N,又三點A(α,0),B(0,α+4),C(1,3)共線,求α的值.答案:(1)由2x+3y+8=0x-y-1=0解得x=-1,y=-2,∴直線2x+3y+8=0和x-y-1=0的交點為(-1,-2).∵三條直線2x+3y+8=0,x-y-1=0和x+ky=0相交于一點,∴(-1,-2)在直線x+ky=0上,∴-1-2k=0,解得k=-12.(2)A、B、C三點共線,說明直線AB與直線AC的斜率相等∴a+4-00-a=3-01-a,解得:a=214.在畫兩個變量的散點圖時,下面哪個敘述是正確的(
)
A.預報變量x軸上,解釋變量y軸上
B.解釋變量x軸上,預報變量y軸上
C.可以選擇兩個變量中任意一個變量x軸上
D.可以選擇兩個變量中任意一個變量y軸上答案:B15.拋擲3顆質(zhì)地均勻的骰子,求點數(shù)和為8的概率______.答案:由題意總的基本事件數(shù)為6×6×6=216種點數(shù)和為8的事件包含了向上的點的情況有(1,1,6),(1,2,5),(2,2,4),(2,3,3)有四種情況向上點數(shù)分別為(1,1,6)的事件包含的基本事件數(shù)有3向上點數(shù)分別為(1,2,5)的事件包含的基本事件數(shù)有6向上點數(shù)分別為(2,2,4)的事件包含的基本事件數(shù)有3向上點數(shù)分別為(2,3,3)的事件包含的基本事件數(shù)有3所以點數(shù)和為8的事件包含基本事件數(shù)是3+6+3+3=15種點數(shù)和為8的事件的概率是15216=572故為:572.16.已知a,b是非零向量,且a,b夾角為π3,則向量p=a丨a丨+b丨b丨的模為______.答案:∵|a|a||=|a||a|=1=|b|b||,a?b=|a|
|b|cosπ3=12|a|
|b|∴p2=|(a|a|+b|b|)2=1+1+2?a|a|?b|b|=2+2×12=3,∴|p|=3.故為3.17.一位運動員投擲鉛球的成績是14m,當鉛球運行的水平距離是6m時,達到最大高度4m.若鉛球運行的路線是拋物線,則鉛球出手時距地面的高度是()
A.2.25m
B.2.15m
C.1.85m
D.1.75m
答案:D18.設p,q是簡單命題,則“p且q為真”是“p或q為真”的()A.必要不充分條件B.充分不必要條件C.充要條件D.既不充分也不必要條件答案:若“p且q為真”成立,則p,q全真,所以“p或q為真”成立若“p或q為真”則p,q全真或真q假或p假q真,所以“p且q為真”不一定成立∴“p且q為真”是“p或q為真”的充分不必要條件故選B19.圓x2+y2-6x+4y+12=0與圓x2+y2-14x-2y+14=0的位置關系是______.答案:∵圓x2+y2-6x+4y+12=0化成標準形式,得(x-3)2+(y+2)2=1∴圓x2+y2-6x+4y+12=0的圓心為C1(3,-2),半徑r1=1同理可得圓x2+y2-14x-2y+14=0的C2(7,1),半徑r2=6∵兩圓的圓心距|C1C2|=(7-3)2+(1+2)2=5∴|C1C2|=r2-r1=5,可得兩圓的位置關系是內(nèi)切故為:內(nèi)切20.電視機的使用壽命顯像管開關的次數(shù)有關.某品牌電視機的顯像管開關了10000次還能繼續(xù)使用的概率是0.96,開關了15000次后還能繼續(xù)使用的概率是0.80,則已經(jīng)開關了10000次的電視機顯像管還能繼續(xù)使用到15000次的概率是______.答案:記“開關了10000次還能繼續(xù)使用”為事件A,記“開關了15000次后還能繼續(xù)使用”為事件B,根據(jù)題意,易得P(A)=0.96,P(B)=0.80,則P(A∩B)=0.80,由條件概率的計算方法,可得P=P(A∩B)P(A)=0.800.96=56;故為56.21.已知x,y的取值如下表所示:
x3711y102024從散點圖分析,y與x線性相關,且y=74x+a,則a=______.答案:∵線性回歸方程為y=74x+a,,又∵線性回歸方程過樣本中心點,.x=3+7+113=7,.y=10+20+243=18,∴回歸方程過點(7,18)∴18=74×7+a,∴a=234.故為:234.22.如圖,平面內(nèi)有三個向量OA、OB、OC,其中與OA與OB的夾角為120°,OA與OC的夾角為30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),則λ+μ的值為______.答案:過C作OA與OB的平行線與它們的延長線相交,可得平行四邊形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四邊形的邊長為2和4,λ+μ=2+4=6.故為6.23.在極坐標系中,曲線ρ=4sinθ和ρcosθ=1相交于點A、B,則|AB|=______.答案:將其化為直角坐標方程為x2+y2-4y=0,和x=1,代入得:y2-4y+1=0,則|AB|=|y1-y2|=(y1+y2)2-4y1y1=(4)2-4=23.故為:23.24.能較好地反映一組數(shù)據(jù)的離散程度的是()
A.眾數(shù)
B.平均數(shù)
C.標準差
D.極差答案:C25.考慮坐標平面上以O(0,0),A(3,0),B(0,4)為頂點的三角形,令C1,C2分別為△OAB的外接圓、內(nèi)切圓.請問下列哪些選項是正確的?
(1)C1的半徑為2
(2)C1的圓心在直線y=x上
(3)C1的圓心在直線4x+3y=12上
(4)C2的圓心在直線y=x上
(5)C2的圓心在直線4x+3y=6上.答案:O,A,B三點的位置如右圖所示,C1,C2為△OAB的外接圓與內(nèi)切圓,∵△OAB為直角三角形,∴C1為以線段AB為直徑的圓,故半徑為12|AB|=52,所以(1)選項錯誤;又C1的圓心為線段AB的中點(32,2),此點在直線4x+3y=12上,所以選項(2)錯誤,選項(3)正確;如圖,P為△OAB的內(nèi)切圓C2的圓心,故P到△OAB的三邊距離相等均為圓C2的半徑r.連接PA,PB,PC,可得:S△OAB=S△POA+S△PAB+S△POB?12×3×4=12×3×r+12×5×r+12×4×r?r=1故P的坐標為(1,1),此點在y=x上.所以選項(4)正確,選項(5)錯誤,綜上,正確的選項有(3)、(4).26.一圓形紙片的圓心為O點,Q是圓內(nèi)異于O點的一定點,點A是圓周上一點,把紙片折疊使點A與點Q重合,然后抹平紙片,折痕CD與OA交于P點,當點A運動時點P的軌跡是______.
①圓
②雙曲線
③拋物線
④橢圓
⑤線段
⑥射線.答案:由題意可得,CD是線段AQ的中垂線,∴|PA|=|PQ|,∴|PQ|+|PO|=|PA|+|PO|=半徑R,即點P到兩個定點O、Q的距離之和等于定長R(R>|OQ|),由橢圓的定義可得,點P的軌跡為橢圓,故為④.27.為研究變量x和y的線性相關性,甲、乙二人分別作了研究,利用線性回歸方法得到回歸直線方程l1和l2,兩人計算知.x相同,.y也相同,下列正確的是()A.l1與l2一定重合B.l1與l2一定平行C.l1與l2相交于點(.x,.y)D.無法判斷l(xiāng)1和l2是否相交答案:∵兩個人在試驗中發(fā)現(xiàn)對變量x的觀測數(shù)據(jù)的平均值都是s,對變量y的觀測數(shù)據(jù)的平均值都是t,∴兩組數(shù)據(jù)的樣本中心點是(.x,.y)∵回歸直線經(jīng)過樣本的中心點,∴l(xiāng)1和l2都過(.x,.y).故選C.28.求原點至3x+4y+1=0的距離?答案:由原點坐標為(0,0),得到原點到已知直線的距離d=|3?0+4?0+1|32+42=15.29.已知△ABC的頂點B、C在橢圓+y2=1上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是()
A.2
B.6
C.4
D.12答案:C30.圖為一個幾何體的三視國科,尺寸如圖所示,則該幾何體的體積為()A.23+π6B.23+4πC.33+π6D.33+4π3答案:由圖中數(shù)據(jù),下部的正三棱柱的高是3,底面是一個正三角形,其邊長為2,高為3,故其體積為3×12×2×3=33上部的球體直徑為1,故其半徑為12,其體積為4π3×(12)3=π6故組合體的體積是33+π6故選C31.已知A(0,1),B(3,7),C(x,15)三點共線,則x的值是()
A.5
B.6
C.7
D.8答案:C32.設x>0,y>0且x≠y,求證答案:證明略解析:由x>0,y>0且x≠y,要證明只需
即只需由條件,顯然成立.∴原不等式成立33.如圖程序框圖表達式中N=______.答案:該程序按如下步驟運行①N=1×2,此時i變成3,滿足i≤5,進入下一步循環(huán);②N=1×2×3,此時i變成4,滿足i≤5,進入下一步循環(huán);③N=1×2×3×4,此時i變成5,滿足i≤5,進入下一步循環(huán);④N=1×2×3×4×5,此時i變成6,不滿足i≤5,結束循環(huán)體并輸出N的值因此,最終輸出的N等于1×2×3×4×5=120故為:12034.已知直線的斜率為3,則此直線的傾斜角為()A.30°B.60°C.45°D.120°答案:∵直線的斜率為3,∴直線傾斜角α滿足tanα=3結合α∈[0°,180°),可得α=60°故選:B35.不等式的解集是
(
)A.B.C.D.答案:B解析:當時,不等式成立;當時,不等式可化為,解得綜上,原不等式解集為故選B36.在15個村莊中有7個村莊交通不方便,現(xiàn)從中任意選10個村莊,用X表示這10個村莊中交通不方便的村莊數(shù),則P(X=4)=______.(用數(shù)字表示)答案:由題意P(X=4)=C47×C68C1015=7×6×53×2×1×8×72×115×14×13×12×115×4×3×2×1=140429故為:14042937.已知一個幾何體是由上下兩部分構成的一個組合體,其三視圖如圖所示,則這個組合體的上下兩部分分別是(
)答案:A38.如圖,正方體ABCD-A1B1C1D1的棱長為3,點M在AB上,且AM=13AB,點P在平面ABCD上,且動點P到直線A1D1的距離與P到點M的距離相等,在平面直角坐標系xAy中,動點P的軌跡方程是______.答案:作PN⊥AD,則PN⊥面A1D1DA,作NH⊥A1D1,N,H為垂足,由三垂線定理可得PH⊥A1D1.以AD,AB,AA1為x軸,y軸,z軸,建立空間坐標系,設P(x,y,0),由題意可得M(0,1,0),H(x,0,3),|PM|=|pH|,∴x2+(y-1)2=y2+9,整理,得x2=2y+8.故為:x2=2y+8.39.在邊長為1的正方形ABCD中,若AB=a,BC=b,AC=c.則|a+b+2c|的值是______.答案:由題意可得|a|=|b|=1,|c|=2,a+
b=c,∴|a+b+2c|=|3c|=32,故為32.40.若a=()x,b=x3,c=logx,則當x>1時,a,b,c的大小關系式()
A.a(chǎn)<b<c
B.c<b<a
C.c<a<b
D.a(chǎn)<c<b答案:C41.設F1,F(xiàn)2是雙曲線x29-y216=1的兩個焦點,點P在雙曲線上,且∠F1PF2=90°,求△F1PF2的面積.答案:雙曲線x29-y216=1的a=3,c=5,不妨設PF1>PF2,則PF1-PF2=2a=6F1F22=PF12+PF22,而F1F2=2c=10得PF12+PF22=(PF1-PF2)2+2PF1?PF2=100∴PF1?PF2=32∴S=12PF1?PF2=16△F1PF2的面積16.42.雙曲線的漸近線方程是3x±2y=0,則該雙曲線的離心率等于______.答案:∵雙曲線的漸近線方程是3x±2y=0,∴ba=32,設a=2k,b=3k,則c=13k,∴e=ca=132.:132.43.為了檢測某種產(chǎn)品的直徑(單位mm),抽取了一個容量為100的樣本,其頻率分布表(不完整)如下:
分組頻數(shù)累計頻數(shù)頻率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)
(Ⅰ)完成頻率分布表;
(Ⅱ)畫出頻率分布直方圖;
(Ⅲ)據(jù)上述圖表,估計產(chǎn)品直徑落在[10.95,11.35)范圍內(nèi)的可能性是百分之幾?答案:解(Ⅰ)分組頻數(shù)累計頻數(shù)頻率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)72240.24[11.25,11.35)84120.12[11.35,11.45)9280.08[11.45,11.55)9860.06[11.55,11.65)10020.02(Ⅲ)0.15+0.18+0.24+0.12=0.69=69%,所以產(chǎn)品直徑落在[10.95,11.35)范圍內(nèi)的可能性為69%.44.k取何值時,一元二次方程kx2+3kx+k=0的兩根為負。答案:解:∴k≤或k>345.圓柱的底面積為S,側(cè)面展開圖為正方形,那么這個圓柱的側(cè)面積為()A.πSB.2πSC.3πSD.4πS答案:設圓柱的底面半徑是R,母線長是l,∵圓柱的底面積為S,側(cè)面展開圖為正方形,∴πR2=S,且l=2πR,∴圓柱的側(cè)面積為2πRl=4πS.故選D.46.點B是點A(1,2,3)在坐標平面yOz內(nèi)的正投影,則|OB|等于()
A.
B.
C.
D.答案:B47.下列三句話按“三段論”模式排列順序正確的是()
①y=sin
x(x∈R
)是三角函數(shù);②三角函數(shù)是周期函數(shù);
③y=sin
x(x∈R
)是周期函數(shù).
A.①②③
B.②①③
C.②③①
D.③②①答案:B48.向量a=i+
2j在向量b=3i+4j上的投影是______.答案:根據(jù)投影的定義可得:a在b方向上的投影為:|a|cos<a,b>=a?b|b|=1×3+2×452=115.故為:115.49.設復數(shù)z滿足條件|z|=1,那么|z+22+i|的最大值是______.答案:∵|z|=1,∴可設z=cosα+sinα,于是|z+22+i|=|cosα+22+(sinα+1)i|=(cosα+22)2+(sinα+1)2=10+6sin(α+θ)≤10+6=4.∴|z+22+i|的最大值是4.故為450.若方程2ax2-x-1=0在(0,1)內(nèi)恰有一解,則a的取值范圍是______.答案:當a>0時,方程對應的函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰有一解,必有f(0)?f(1)<0,即-1×(2a-2)<0,解得a>1當a≤0時函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰無解.故為:a>1第3卷一.綜合題(共50題)1.某學校準備調(diào)查高三年級學生完成課后作業(yè)所需時間,采取了兩種抽樣調(diào)查的方式:第一種由學生會的同學隨機對24名同學進行調(diào)查;第二種由教務處對年級的240名學生編號,由001到240,請學號最后一位為3的同學參加調(diào)查,則這兩種抽樣方式依次為()A.分層抽樣,簡單隨機抽樣B.簡單隨機抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣D.簡單隨機抽樣,系統(tǒng)抽樣答案:學生會的同學隨機對24名同學進行調(diào)查,是簡單隨機抽樣,對年級的240名學生編號,由001到240,請學號最后一位為3的同學參加調(diào)查,是系統(tǒng)抽樣,故選D2.在極坐標系(ρ,θ)(0≤θ<2π)中,曲線ρ=2sinθ與ρcosθ=-1的交點的極坐標為
______.答案:兩條曲線的普通方程分別為x2+y2=2y,x=-1.解得x=-1y=1.由x=ρcosθy=ρsinθ得點(-1,1),極坐標為(2,3π4).故填:(2,3π4).3.(幾何證明選講選做題)已知AD是△ABC的外角∠EAC的平分線,交BC的延長線于點D,延長DA交△ABC的外接圓于點F,連接FB,F(xiàn)C.
(1)求證:FB=FC;
(2)若AB是△ABC外接圓的直徑,∠EAC=120°,BC=33,求AD的長.答案:(1)證明:∵AD平分∠EAC,∴∠EAD=∠DAC;∵四邊形AFBC內(nèi)接于圓,∴∠DAC=∠FBC;
…2′∵∠EAD=∠FAB=∠FCB∴∠FBC=∠FCB∴FB=FC.…5(2)∵AB是圓的直徑,∴∠ACD=90°∵∠EAC=120°,∴∠DAC=60°,∴∠D=30°…7′在Rt△ACB中,∵BC=33,∠BAC=60°,∴AC=3又在Rt△ACD中,∠D=30°,AC=3,∴AD=6
…10′4.平行線l1:3x-2y-5=0與l2:6x-4y+3=0之間的距離為______.答案:將l1:3x-2y-5=0化成6x-4y-10=0∴l(xiāng)1:3x-2y-5=0與l2:6x-4y+3=0之間的距離為d=|-10-3|62+(-4)2=1352=132故為:1325.直線l1:a1x+b1y+1=0直線l2:a2x+b2y+1=0交于一點(2,3),則經(jīng)過A(a1,b1),B(a2,b2)兩點的直線方程為______.答案:∵直線l1:a1x+b1y+1=0直線l2:a2x+b2y+1=0交于一點(2,3),∴2a1+3b1+1=0,2a2+3b2+2=0.∴A(a1,b1),B(a2,b2)兩點都在直線2x+3y+1=0上,由于兩點確定一條直線,因此經(jīng)過A(a1,b1),B(a2,b2)兩點的直線方程即為2x+3y+1=0.故為:2x+3y+1=0.6.已知正方形的邊長為2,AB=a,BC=b,AC=c,則|a+b+c|=()A.0B.2C.2D.4答案:由題意可得:AB+BC=AC,所以c=a+b,所以|a+b+c|=2|c|.因為正方形的邊長為2,所以|AC|=|c|=2,所以|a+b+c|=2|c|=4.故選D.7.命題“12既是4的倍數(shù),又是3的倍數(shù)”的形式是()A.p∨qB.p∧qC.¬pD.簡單命題答案:命題“12既是4的倍數(shù),又是3的倍數(shù)”可轉(zhuǎn)化成“12是4的倍數(shù)且12是3的倍數(shù)”故是p且q的形式;故選B.8.種植兩株不同的花卉,它們的存活率分別為p和q,則恰有一株存活的概率為(
)A.p+q-2pqB.p+q-pqC.p+qD.pq答案:A解析:恰有一株存活的概率為p(1-q)+(1-p)q=p+q-2pq。9.如圖是某賽季甲、乙兩名籃球運動員每場比賽得分的莖葉圖,中間的數(shù)字表示得分的十位數(shù),下列對乙運動員的判斷錯誤的是()A.乙運動員得分的中位數(shù)是28B.乙運動員得分的眾數(shù)為31C.乙運動員的場均得分高于甲運動員D.乙運動員的最低得分為0分答案:根據(jù)題意,可得甲的得分數(shù)據(jù):8,14,16,13,23,26,28,30,30,39可得甲得分的平均數(shù)是22.7乙的得分數(shù)據(jù):12,15,25,24,21,31,36,31,37,44可得乙得分的平均數(shù)是27.6,31出現(xiàn)了兩次,可得乙得分的眾數(shù)是1將乙得分數(shù)據(jù)按從小到大的順序排列,位于中間的兩個數(shù)是25和31,故中位數(shù)是12(25+31)=28由以上的數(shù)據(jù),可得:乙運動員得分的中位數(shù)是28,A項是正確的;乙運動員得分的眾數(shù)為31,B項是正確的;乙運動員的場均得分高于甲運動員,C各項是正確的.而D項因為乙運動員的得分沒有0分,故D項錯誤故選:D10.某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表:
廣告費用x(萬元)
2
3
4
5
銷售額y(萬元)
27
39
48
54
根據(jù)上表可得回歸方程y=bx+a中的b為9.4,據(jù)此模型預報廣告費用為6萬元時銷售額為()
A.65.5萬元
B.66.2萬元
C.67.7萬元
D.72.0萬元答案:A11.方程x(x2+y2-1)=0和x2-(x2+y2-1)2=0表示的圖形是()
A.都是兩個點
B.一條直線和一個圓
C.前者為兩個點,后者是一條直線和一個圓
D.前者是一條直線和一個圓,后者是兩個圓答案:D12.如圖所示,PD⊥平面ABCD,且四邊形ABCD為正方形,AB=2,E是PB的中點,
cos〈,〉=.
(1)建立適當?shù)目臻g坐標系,寫出點E的坐標;
(2)在平面PAD內(nèi)求一點F,使EF⊥平面PCB.答案:(1)點E的坐標是(1,1,1)(2)F是AD的中點時滿足EF⊥平面PCB解析:(1)如圖所示,以DA、DC、DP所在直線分別為x軸、y軸、z軸建立空間直角坐標系,則A(2,0,0)、B(2,2,0)、C(0,2,0),設P(0,0,2m),則E(1,1,m),∴=(-1,1,m),=(0,0,2m).∴cos〈,〉==.解得m=1,∴點E的坐標是(1,1,1).(2)∵F∈平面PAD,∴可設F(x,0,z).則=(x-1,-1,z-1),又=(2,0,0),=(0,2,-2)∵EF⊥平面PCB∴⊥,且⊥即∴∴,∴F點的坐標為(1,0,0)即點F是AD的中點時滿足EF⊥平面PCB.13.下圖是由A、B、C、D中的哪個平面圖旋轉(zhuǎn)而得到的(
)答案:A14.對賦值語句的描述正確的是(
)
①可以給變量提供初值
②將表達式的值賦給變量
③可以給一個變量重復賦值
④不能給同一變量重復賦值A.①②③B.①②C.②③④D.①②④答案:A解析:試題分析:在表述一個算法時,經(jīng)常要引入變量,并賦給該變量一個值。用來表明賦給某一個變量一個具體的確定值的語句叫做賦值語句。賦值語句的一般格式是:變量名=表達式其中“=”為賦值號.故選A。點評:簡單題,賦值語句的一般格式是:變量名=表達式其中"="為賦值號。15.參數(shù)方程(t是參數(shù))表示的圖象是()
A.射線
B.直線
C.圓
D.雙曲線答案:A16.已知F1=i+2j+3k,F(xiàn)2=2i+3j-k,F(xiàn)3=3i-4j+5k,若F1,F(xiàn)2,F(xiàn)3共同作用于一物體上,使物體從點M(1,-2,1)移動到N(3,1,2),則合力所作的功是______.答案:由題意可得F1=(1,2,3)F2=(2,3,-1),F(xiàn)3=(3,-4,5),故合力F=F1+F2+F3=(6,1,7),位移S=MN=(3,1,2)-(1,-2,1)=(2,3,1),故合力所作的功W=F?S=6×2+1×3+7×1=22故為:2217.2005年10月,我國載人航天飛船“神六”飛行獲得圓滿成功.已知“神六”飛船變軌前的運行軌道是一個以地心為焦點的橢圓,飛船近地點、遠地點離地面的距離分別為200公里、250公里.設地球半徑為R公里,則此時飛船軌道的離心率為______.(結果用R的式子表示)答案:(I)設橢圓的方程為x2a2+y2b2=1由題設條件得:a-c=|OA|-|OF2|=|F2A|=R+200,a+c=|OB|+|OF2|=|F2B|=R+250,解得a=225+R,c=25則此時飛船軌道的離心率為25225+R故為:25225+R.18.設F1,F(xiàn)2是雙曲線x29-y216=1的兩個焦點,點P在雙曲線上,且∠F1PF2=90°,求△F1PF2的面積.答案:雙曲線x29-y216=1的a=3,c=5,不妨設PF1>PF2,則PF1-PF2=2a=6F1F22=PF12+PF22,而F1F2=2c=10得PF12+PF22=(PF1-PF2)2+2PF1?PF2=100∴PF1?PF2=32∴S=12PF1?PF2=16△F1PF2的面積16.19.一位運動員投擲鉛球的成績是14m,當鉛球運行的水平距離是6m時,達到最大高度4m.若鉛球運行的路線是拋物線,則鉛球出手時距地面的高度是()
A.2.25m
B.2.15m
C.1.85m
D.1.75m
答案:D20.若向量e1,e2不共線,且ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實數(shù)k的取值范圍為______.答案:∵當(ke1+e2)∥(e1+ke2),∴ke1+e2=λ(e1+ke2),∴ke1+e2=λe1+λke2,∴k=λ,1=λk,∴k2=1,k=±1,故ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實數(shù)k的取值范圍為k≠±1.故為:k≠±1.21.盒子中有10張獎券,其中3張有獎,甲、乙先后從中各抽取1張(不放回),記“甲中獎”為A,“乙中獎”為B.
(1)求P(A),P(B),P(AB),P(A|B);
(2)A與B是否相互獨立,說明理由.答案:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因為P(A)≠P(A|B),所以A與B不相互獨立.解析:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因為P(A)≠P(A|B),所以A與B不相互獨立.22.已知動點M到定點F(1,0)的距離比M到定直線x=-2的距離小1.
(1)求證:M點的軌跡是拋物線,并求出其方程;
(2)大家知道,過圓上任意一點P,任意作互相垂直的弦PA、PB,則弦AB必過圓心(定點).受此啟發(fā),研究下面問題:
1過(1)中的拋物線的頂點O任意作互相垂直的弦OA、OB,問:弦AB是否經(jīng)過一個定點?若經(jīng)過,請求出定點坐標,否則說明理由;2研究:對于拋物線上某一定點P(非頂點),過P任意作互相垂直的弦PA、PB,弦AB是否經(jīng)過定點?答案:(1)證明:由題意可知:動點M到定點F(1,0)的距離等于M到定直線x=-1的距離根據(jù)拋物線的定義可知,M的軌跡是拋物線所以拋物線方程為:y2=4x(2)(i)設A(x1,y1),B(x2,y2),lAB:y=kx+b,(b≠0)由y=kx+by2=4x消去y得:k2x2+(2bk-4)kx+b2=0,x1x2=b2k2.∵OA⊥OB,∴OA?OB=0,∴x1x2+y1y2=0,y1y2=4bk所以x1x2+(x1x2)2=0,b≠0,∴b=-2k,∴直線AB過定點M(1,0),(ii)設p(x0,y0)設AB的方程為y=mx+n,代入y2=2x得y2-2my=-2n=0∴y1+y2=2m,y1y2-2n其中y1,y2分別是A,B的縱坐標∵AP⊥PB∴kmax?kmin=-1即y1-y0x1-x0?y2-y0x2-x0=1∴(y1+y0)(y2+y0)=-4?y1y2+(y1+y2)y0+y02-4=0(-2n)+2my0+2x0+4=0,=my0+x0+2直線PQ的方程為x=my+my0+x0+2,即x=m(y+y0)+x0+2,它一定過點(x0+2,-y0)23.下列說法中正確的是()
A.以直角三角形的一邊為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓錐
B.以直角梯形的一腰為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓臺
C.圓柱、圓錐、圓臺的底面都是圓
D.圓錐側(cè)面展開圖為扇形,這個扇形所在圓的半徑等于圓錐的底面圓的半徑答案:C24.i是虛數(shù)單位,若(3+5i)x+(2-i)y=17-2i,則x、y的值分別為()
A.7,1
B.1,7
C.1,-7
D.-1,7答案:B25.x=5
y=6
x+y=11
END
上面程序運行時輸出的結果是()
A.x+y=11
B.11
C.x+y
D.出錯信息答案:B26.乘積(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)的展開式中,一共有多少項?答案:因為:從第一個括號中選一個字母有3種方法,從第二個括號中選一個字母有4種方法,從第三個括號中選一個字母有5種方法.故根據(jù)乘法計數(shù)原理可知共有N=3×4×5=60(項).27.規(guī)定運算.abcd.=ad-bc,則.1i-i2.=______.答案:根據(jù)題目的新規(guī)定知,.1i-i2.=1×2-(-i)i=2+i2=2-1=1.故為:1.28.正十邊形的一個內(nèi)角是多少度?答案:由多邊形內(nèi)角和公式180°(n-2),∴每一個內(nèi)角的度數(shù)是180°(n-2)n當n=10時.得到一個內(nèi)角為180°(10-2)10=144°29.命題“若A∩B=A,則A∪B=B”的逆否命題是()A.若A∪B=B,則A∩B=AB.若A∩B≠A,則A∪B≠BC.若A∪B≠B,則A∩B≠AD.若A∪B≠B,則A∩B=A答案:∵“A∩B=A”的否定是“A∩B≠A”,∴命題“若A∩B=A,則A∪B=B”的逆否命題是“若A∪B≠B,則A∩B≠A”.故選C.30.如圖,圓周上按順時針方向標有1,2,3,4,5五個點.一只青蛙按順時針方向繞圓從一個點跳到另一個點,若它停在奇數(shù)點上,則下次只能跳一個點;若停在偶數(shù)點上,則跳兩個點.該青蛙從“5”這點起跳,經(jīng)2
011次跳后它停在的點對應的數(shù)字是______.答案:起始點為5,按照規(guī)則,跳一次到1,再到2,4,1,2,4,1,2,4,…,“1,2,4”循環(huán)出現(xiàn),而2011=3×670+1.故經(jīng)2011次跳后停在的點是1.故為131.一個算法的流程圖如圖所示,則輸出S的值為
.答案:根據(jù)程序框圖,題意為求:s=1+2+3+4+5+6+7+8+9,計算得:s=45,故為:45.32.若P(2,-1)為曲線x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中點,則該弦所在直線的普通方程為______.答案:∵曲線x=1+5cosθy=5sinθ(0≤θ<2π),∴(x-1)2+y2=25,∵P(2,-1)為曲線x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中點,設過點P(2,-1)的弦與(x-1)2+y2=25交于A(x1,y1),B(x2,y2),則x1+x2=4y1+y2=-2,把A(x1,y1),B(x2,y2)代入(x-1)2+y2=25,得(x1-1)2+y
12=25(x2-1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安全可靠借款協(xié)議封面范本2024年
- 不動產(chǎn)抵押權擔保事宜協(xié)議樣本2024
- 2024年度商用空調(diào)銷售協(xié)議樣本
- 作文技巧課件教學課件
- 上課件使用教學課件
- 北京版五年級(下)勞動技術教案
- 高一排球模塊2教案
- 2024福建福州閩清縣衛(wèi)健系統(tǒng)招聘工作人員考試考生管理單位遴選500模擬題附帶答案詳解
- 要下雨課件教學課件
- 臨時用電安全質(zhì)量協(xié)議
- 教科版五年級科學上冊(風的作用) 教學課件
- 鹽酸-危險化學品安全標簽
- 二年級下冊語文試題 -“詩詞大會”題庫二 (word版有答案) 人教部編版
- 部編版道德與法治三年級上冊知識點
- SB/T 10843-2012金屬組合貨架
- GB/T 4337-2015金屬材料疲勞試驗旋轉(zhuǎn)彎曲方法
- GB/T 40120-2021農(nóng)業(yè)灌溉設備灌溉用熱塑性可折疊軟管技術規(guī)范和試驗方法
- 各專業(yè)試驗報告-nvh m301s1樣車測試報告
- 化工課件-S-Zorb裝置運行特點及故障處理
- 頭發(fā)及頭皮知識講述資料課件
- 兒童年齡分期及各期特點 (兒童護理課件)
評論
0/150
提交評論