2023年鐵門關(guān)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年鐵門關(guān)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年鐵門關(guān)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年鐵門關(guān)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年鐵門關(guān)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩40頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年鐵門關(guān)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.已知直線l過點(diǎn)P(2,1)且與x軸、y軸的正半軸分別交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),則三角形OAB面積的最小值為______.答案:設(shè)A(a,0)、B(0,b),a>0,b>0,AB方程為xa+

yb=1,點(diǎn)P(2,1)代入得2a+1b=1≥22ab,∴ab≥8

(當(dāng)且僅當(dāng)a=4,b=2時,等號成立),故三角形OAB面積S=12

ab≥4,故為4.2.已知A、B、M三點(diǎn)不共線,對于平面ABM外的任意一點(diǎn)O,確定在下列條件下,點(diǎn)P是否與A、B、M一定共面,答案:解:為共面向量,∴P與A、B、M共面,,根據(jù)空間向量共面的推論,P位于平面ABM內(nèi)的充要條件是,∴P與A、B、M不共面.3.已知|a|=1,|b|=2,<a,b>=60°,則|2a+b|=______.答案:∵|a|=1,|b|=2,<a,b>=60°,∴a?b=|a|×|b|cos60°=1由此可得(2a+b)2=4a2+4a?b+b2=4×12+4×1+22=12∴|2a+b|=(2a+b)2=23故為:234.以拋物線的焦點(diǎn)弦為直徑的圓與其準(zhǔn)線的位置關(guān)系是(

A.相切

B.相交

C.相離

D.以上均有可能答案:A5.過點(diǎn)(-1,3)且垂直于直線x-2y+3=0的直線方程為(

A.2x+y-1=0

B.2x+y-5=0

C.x+2y-5=0

D.x-2y+7=0答案:A6.設(shè)有三個命題:“①0<12<1.②函數(shù)f(x)=log

12x是減函數(shù).③當(dāng)0<a<1時,函數(shù)f(x)=logax是減函數(shù)”.當(dāng)它們構(gòu)成三段論時,其“小前提”是______(填序號).答案:三段話寫成三段論是:大前提:當(dāng)0<a<1時,函數(shù)f(x)=logax是減函數(shù),小前提:0<12<1,結(jié)論:函數(shù)f(x)=log

12x是減函數(shù).其“小前提”是①.故為:①.7.若向量且與的夾角余弦為則λ等于()

A.4

B.-4

C.

D.答案:C8.如圖所示,PD⊥平面ABCD,且四邊形ABCD為正方形,AB=2,E是PB的中點(diǎn),

cos〈,〉=.

(1)建立適當(dāng)?shù)目臻g坐標(biāo)系,寫出點(diǎn)E的坐標(biāo);

(2)在平面PAD內(nèi)求一點(diǎn)F,使EF⊥平面PCB.答案:(1)點(diǎn)E的坐標(biāo)是(1,1,1)(2)F是AD的中點(diǎn)時滿足EF⊥平面PCB解析:(1)如圖所示,以DA、DC、DP所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0)、B(2,2,0)、C(0,2,0),設(shè)P(0,0,2m),則E(1,1,m),∴=(-1,1,m),=(0,0,2m).∴cos〈,〉==.解得m=1,∴點(diǎn)E的坐標(biāo)是(1,1,1).(2)∵F∈平面PAD,∴可設(shè)F(x,0,z).則=(x-1,-1,z-1),又=(2,0,0),=(0,2,-2)∵EF⊥平面PCB∴⊥,且⊥即∴∴,∴F點(diǎn)的坐標(biāo)為(1,0,0)即點(diǎn)F是AD的中點(diǎn)時滿足EF⊥平面PCB.9.敘述并證明勾股定理.答案:證明:如圖左邊的正方形是由1個邊長為a的正方形和1個邊長為b的正方形以及4個直角邊分別為a、b,斜邊為c的直角三角形拼成的.右邊的正方形是由1個邊長為c的正方形和4個直角邊分別為a、b,斜邊為c的直角三角形拼成的.因?yàn)檫@兩個正方形的面積相等(邊長都是a+b),所以可以列出等式a2+b2+4×12ab=c2+4×12ab,化簡得a2+b2=c2.下面是一個錯誤證法:勾股定理:直角三角形的兩直角邊的平方和等于斜邊的平方這一特性叫做勾股定理或勾股弦定理,又稱畢達(dá)哥拉斯定理或畢氏定理證明:作兩個全等的直角三角形,設(shè)它們的兩條直角邊長分別為a、b(b>a),斜邊長為c.再做一個邊長為c的正方形.把它們拼成如圖所示的多邊形,使E、A、C三點(diǎn)在一條直線上.過點(diǎn)Q作QP∥BC,交AC于點(diǎn)P.過點(diǎn)B作BM⊥PQ,垂足為M;再過點(diǎn)F作FN⊥PQ,垂足為N.∵∠BCA=90°,QP∥BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一個矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=90°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴Rt△BMQ≌Rt△BCA.同理可證Rt△QNF≌Rt△AEF.即a2+b2=c210.高二年級某班有男生36人,女生28人,從中任選一位同學(xué)為數(shù)學(xué)科代表,則不同選法的種數(shù)是()A.36B.28C.64D.1008答案:高二年級某班有男生36人,女生28人,即共有64人,從中任選一位同學(xué)為數(shù)學(xué)科代表,則不同選法的種數(shù)64,故選C.11.三棱錐P-ABC中,M為BC的中點(diǎn),以為基底,則可表示為()

A.

B.

C.

D.答案:D12.在極坐標(biāo)系中,點(diǎn)A的極坐標(biāo)為(2,0),直線l的極坐標(biāo)方程為ρ(cosθ+sinθ)+2=0,則點(diǎn)A到直線l的距離為______.答案:由題意得點(diǎn)A(2,0),直線l為

ρ(cosθ+sinθ)+2=0,即

x+y+2=0,∴點(diǎn)A到直線l的距離為

|2+0+2|2=22,故為22.13.若矩陣滿足下列條件:①每行中的四個數(shù)所構(gòu)成的集合均為{1,2,3,4};②四列中有且只有兩列的上下兩數(shù)是相同的.則這樣的不同矩陣的個數(shù)為()

A.24

B.48

C.144

D.288答案:C14.要考察某種品牌的850顆種子的發(fā)芽率,抽取60粒進(jìn)行實(shí)驗(yàn).利用隨機(jī)數(shù)表抽取種子時,先將850顆種子按001,002,…,850進(jìn)行編號,如果從隨機(jī)數(shù)表第8行第11列的數(shù)1開始向右讀,請你依次寫出最先檢測的4顆種子的編號______,______,______,______.

(下面摘取了隨機(jī)數(shù)表第7行至第9行的一部分)

84

42

17

53

31

57

24

55

06

88

77

04

74

47

67

21

76

33

50

25

63

01

63

78

59

16

95

55

67

19

98

10

50

71

75

12

86

73

58

07

44

39

52

38

79

33

21

12

34

29

78

64

56

07

82

52

42

07

44

38.答案:由于隨機(jī)數(shù)表中第8行的數(shù)字為:63

01

63

78

59

16

95

5567

19

98

10

50

71

75

12

86

73

58

07其第11列數(shù)字為1,故產(chǎn)生的第一個數(shù)字為:169,第二個數(shù)字為:555,第三個數(shù)字為:671,第四個數(shù)字為:998(超出編號范圍舍)第五個數(shù)字為:105故為:169,555,671,10515.若函數(shù),則下列結(jié)論正確的是(

)A.,在上是增函數(shù)B.,在上是減函數(shù)C.,是偶函數(shù)D.,是奇函數(shù)答案:C解析:對于時有是一個偶函數(shù)16.設(shè)ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,則a1x1,a2x2,…,anxn的值中,現(xiàn)給出以下結(jié)論,其中你認(rèn)為正確的是______.

①都大于1②都小于1③至少有一個不大于1④至多有一個不小于1⑤至少有一個不小于1.答案:由題意ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,對于a1x1,a2x2,…,anxn的值中,若①成立,則分母都小于分子,由于分母的平方和為1,故可得a12+a22+…an2大于1,這與已知矛盾,故①不對;若②成立,則分母都大于分子,由于分母的平方和為1,故可得a12+a22+…an2小于1,這與已知矛盾,故②不對;由于③與①兩結(jié)論互否,故③對④不可能成立,a1x1,a2x2,…,anxn的值中有多于一個的比值大于1是可以的,故不對⑤與②兩結(jié)論互否,故正確綜上③⑤兩結(jié)論正確故為③⑤17.平面向量與的夾角為60°,=(1,0),||=1,則|+2|=(

A.7

B.

C.4

D.12答案:B18.如圖,F(xiàn)1,F(xiàn)2分別為橢圓x2a2+y2b2=1的左、右焦點(diǎn),點(diǎn)P在橢圓上,△POF2是面積為3的正三角形,則b2的值是______.答案:∵△POF2是面積為3的正三角形,∴S=34|PF2|2=3,|PF2|=2.∴c=2,∵△PF1F2為直角三角形,∴a=3+1,故為23.19.已知集合A滿足{1,2,3}∪A={1,2,3,4},則集合A的個數(shù)為______.答案:∵{1,2,3}∪A={1,2,3,4},∴A={4};{1,4};{2,4};{3,4};{1,2,4};{1,3,4};{2,3,4};{1,2,3,4},則集合A的個數(shù)為8.故為:820.O、A、B、C為空間四個點(diǎn),又為空間的一個基底,則()

A.O、A、B、C四點(diǎn)共線

B.O、A、B、C四點(diǎn)共面,但不共線

C.O、A、B、C四點(diǎn)中任意三點(diǎn)不共線

D.O、A、B、C四點(diǎn)不共面答案:D21.將正方形ABCD沿對角線BD折起,使平面ABD⊥平面CBD,E是CD中點(diǎn),則∠AED的大小為()

A.45°

B.30°

C.60°

D.90°答案:D22.若向量a、b的夾角為150°,|a|=3,|b|=4,則|2a+b|=______.答案:|2a+b|=(2a+b)2=4a2+b2+4a?b=12+16+4×3×4×cos150°=2.故為:223.已知隨機(jī)變量ξ服從正態(tài)分布N(2,0.2),P(ξ≤4)=0.84,則P(ξ≤0)等于()A.0.16B.0.32C.0.68D.0.84答案:∵隨機(jī)變量ξ服從正態(tài)分布N(2,0.2),μ=2,∴p(ξ≤0)=p(ξ≥4)=1-p(ξ≤4)=0.16.故選A.24.若拋物線y2=4x上一點(diǎn)P到其焦點(diǎn)的距離為3,則點(diǎn)P的橫坐標(biāo)等于______.答案:∵拋物線y2=4x=2px,∴p=2,由拋物線定義可知,拋物線上任一點(diǎn)到焦點(diǎn)的距離與到準(zhǔn)線的距離是相等的,∴|MF|=3=x+p2=3,∴x=2,故為:2.25.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,點(diǎn)M(ρ,θ)關(guān)于極點(diǎn)的對稱點(diǎn)的極坐標(biāo)是______.答案:由點(diǎn)的極坐標(biāo)的意義可得,點(diǎn)M(ρ,θ)關(guān)于極點(diǎn)的對稱點(diǎn)到極點(diǎn)的距離等于ρ,極角為π+θ,故點(diǎn)M(ρ,θ)關(guān)于極點(diǎn)的對稱點(diǎn)的極坐標(biāo)是(ρ,π+θ),故為(ρ,π+θ).26.已知雙曲線C:x2a2-y2b2=1(a>0,b>0)的一個焦點(diǎn)是F2(2,0),且b=3a.

(1)求雙曲線C的方程;

(2)設(shè)經(jīng)過焦點(diǎn)F2的直線l的一個法向量為(m,1),當(dāng)直線l與雙曲線C的右支相交于A,B不同的兩點(diǎn)時,求實(shí)數(shù)m的取值范圍;并證明AB中點(diǎn)M在曲線3(x-1)2-y2=3上.

(3)設(shè)(2)中直線l與雙曲線C的右支相交于A,B兩點(diǎn),問是否存在實(shí)數(shù)m,使得∠AOB為銳角?若存在,請求出m的范圍;若不存在,請說明理由.答案:(1)c=2c2=a2+b2∴4=a2+3a2∴a2=1,b2=3,∴雙曲線為x2-y23=1.(2)l:m(x-2)+y=0由y=-mx+2mx2-y23=1得(3-m2)x2+4m2x-4m2-3=0由△>0得4m4+(3-m2)(4m2+3)>012m2+9-3m2>0即m2+1>0恒成立又x1+x2>0x1?x2>04m2m2-3>04m2+3m2-3>0∴m2>3∴m∈(-∞,-3)∪(3,+∞)設(shè)A(x1,y1),B(x2,y2),則x1+x22=2m2m2-3y1+y22=-2m3m2-3+2m=-6mm2-3∴AB中點(diǎn)M(2m2m2-3,-6mm2-3)∵3(2m2m2-3-1)2-36m2(m2-3)2=3×(m2+3)2(m2-3)2-36m2(m2-3)2=3?m4+6m2+9-12m2(m2-3)2=3∴M在曲線3(x-1)2-y2=3上.(3)A(x1,y1),B(x2,y2),設(shè)存在實(shí)數(shù)m,使∠AOB為銳角,則OA?OB>0∴x1x2+y1y2>0因?yàn)閥1y2=(-mx1+2m)(-mx2+2m)=m2x1x2-2m2(x1+x2)+4m2∴(1+m2)x1x2-2m2(x1+x2)+4m2>0∴(1+m2)(4m2+3)-8m4+4m2(m2-3)>0即7m2+3-12m2>0∴m2<35,與m2>3矛盾∴不存在27.若關(guān)于x的一元二次實(shí)系數(shù)方程x2+px+q=0有一個根為1+i(i是虛數(shù)單位),則p+q的值是()

A.-1

B.0

C.2

D.-2答案:B28.正方體ABCD-A1B1C1D1的棱長為2,MN是它的內(nèi)切球的一條弦(把球面上任意兩點(diǎn)之間的線段稱為球的弦),P為正方體表面上的動點(diǎn),當(dāng)弦MN最長時.PM?PN的最大值為______.答案:設(shè)點(diǎn)O是此正方體的內(nèi)切球的球心,半徑R=1.∵PM?PN≤|PM|

|PN|,∴當(dāng)點(diǎn)P,M,N三點(diǎn)共線時,PM?PN取得最大值.此時PM?PN≤(PO-MO)?(PO+ON),而MO=ON,∴PM?PN≤PO2-R2=PO2-1,當(dāng)且僅當(dāng)點(diǎn)P為正方體的一個頂點(diǎn)時上式取得最大值,∴(PM?PN)max=(232)2-1=2.故為2.29.如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點(diǎn),過

B作BD⊥AC于D,BD交⊙O于E點(diǎn),若AE平分∠BAD,則∠BAD=()

A.30°

B.45°

C.50°

D.60°

答案:D30.將包含甲、乙兩人的4位同學(xué)平均分成2個小組參加某項(xiàng)公益活動,則甲、乙兩名同學(xué)分在同一小組的概率為()

A.

B.

C.

D.答案:C31.在5件產(chǎn)品中,有3件一等品,2件二等品.從中任取2件.那么以710為概率的事件是()A.都不是一等品B.至少有一件二等品C.恰有一件一等品D.至少有一件一等品答案:5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,從5件產(chǎn)品中任取2件,共有C52=10種結(jié)果,∵“任取的2件產(chǎn)品都不是一等品”只有1種情況,其概率是110;“任取的2件產(chǎn)品中至少有一件二等品”有C31C21+1種情況,其概率是710;“任取的2件產(chǎn)品中恰有一件一等品”有C31C21種情況,其概率是610;“任取的2件產(chǎn)品在至少有一件一等品”有C31C21+C32種情況,其概率是910;∴以710為概率的事件是“至少有一件二等品”.故為B.32.下列哪組中的兩個函數(shù)是同一函數(shù)()A.y=(x)2與y=xB.y=(3x)3與y=xC.y=x2與y=(x)2D.y=3x3與y=x2x答案:A、y=x與y=x2的定義域不同,故不是同一函數(shù).B、y=(3x)3=x與y=x的對應(yīng)關(guān)系相同,定義域?yàn)镽,故是同一函數(shù).C、fy=x2與y=(x)2的定義域不同,故不是同一函數(shù).D、y=3x3與y=x2x

具的定義域不同,故不是同一函數(shù).故選B.33.設(shè)i為虛數(shù)單位,若=b+i(a,b∈R),則a,b的值為()

A.a(chǎn)=0,b=1

B.a(chǎn)=1,b=0

C.a(chǎn)=1,b=1

D.a(chǎn)=,b=-1答案:B34.用綜合法或分析法證明:

(1)如果a>0,b>0,則lga+b2≥lga+lgb2(2)求證6+7>22+5.答案:證明:(1)∵a>0,b>0,a+b2≥ab,∴l(xiāng)ga+b2≥lgab=lga+lgb2,即lga+b2≥lga+lgb2;(2)要證6+7>22+5,只需證明(6+7)

2>(8+5)2,即證明242>

240,也就是證明42>40,上式顯然成立,故原結(jié)論成立.35.若過點(diǎn)A(4,0)的直線l與曲線(x-2)2+y2=1有公共點(diǎn),則直線l的斜率的取值范圍為______.答案:設(shè)直線l的方程為y=k(x-4),即kx-y-4k=0∵直線l與曲線(x-2)2+y2=1有公共點(diǎn),∴圓心到直線l的距離小于等于半徑即|2k-4k|k2+1≤1,解得-33≤

k≤33∴直線l的斜率的取值范圍為[-33,33]故為[-33,33]36.已知向量表示“向東航行1km”,向量表示“向南航行1km”,則向量表示()

A向東南航行km

B.向東南航行2km

C.向東北航行km

D.向東北航行2km答案:A37.

在△ABC中,點(diǎn)D在線段BC的延長線上,且BC=3CD,點(diǎn)O在線段CD上(與點(diǎn)C、D不重合),若AO=xAB+(1-x)AC,則x的取值范圍是()

A.

B.

C.

D.答案:D38.如圖,正方體ABCD-A1B1C1D1的棱長為1.

(1)求A1C與DB所成角的大?。?/p>

(2)求二面角D-A1B-C的余弦值;

(3)若點(diǎn)E在A1B上,且EB=1,求EC與平面ABCD所成角的大?。鸢福海?)如圖建立空間直角坐標(biāo)系C-xyz,則C(0,0,0),D(1,0,0),B(0,1,0),A1(1,1,1).∴DB=(-1,1,0),CA1=(1,1,1).∴cos<DB,CA1>=DB?CA1|DB|?|CA1|=02?3=0.∴A1C與DB所成角的大小為90°.(2)設(shè)平面A1BD的法向量n1=(x,y,z),則n1⊥DB,n1⊥A1B,可得-x+y=0x+z=0,∴n1=(1,1,-1).同理可求得平面A1BC的一個法向量n2=(1,0,-1),∴cos<n1,n2>=n1?n2|n1|?|n2|=26=63,∴二面角D-A1B-C的余弦值為63.(3)設(shè)n=(0,0,1)是平面ABCD的一個法向量,且CE=(22,1,22),∴cos<n,CE>=n?CE|n|?|CE|=12,∴<n,CE>=60°,∴EC與平面ABCD所成的角是30°.39.雙曲線C的焦點(diǎn)在x軸上,離心率e=2,且經(jīng)過點(diǎn)P(2,3),則雙曲線C的標(biāo)準(zhǔn)方程是______.答案:設(shè)雙曲線C的標(biāo)準(zhǔn)方程x2a2-y2b2=1,∵經(jīng)過點(diǎn)P(2,3),∴2a2-3b2=1

①,又∵e=2=a2+b2a

②,由①②聯(lián)立方程組并解得

a2=1,b2=3,雙曲線C的標(biāo)準(zhǔn)方程是x2-y23=1,故為:x2-y23=1.40.平面向量、的夾角為60°,=(2,0),=1,則=(

A.

B.

C.3

D.7答案:B41.將一個等腰梯形繞著它的較長的底邊所在的直線旋轉(zhuǎn)一周,所得的幾何體是(

)答案:B42.如圖,在△ABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M為AB邊上的一個動點(diǎn),求PM的最小值.答案:過C作CM⊥AB,連接PM,因?yàn)镻C⊥AB,所以AB⊥平面PCM,所以PM⊥AB,此時PM最短,∵∠BAC=60°,AB=8,∴AC=AB?cos60°=4.∴CM=AC?sin60°=4?32=23.∴PM=PC2+CM2=16+12=27.43.已知A(1,0).B(7,8),若點(diǎn)A和點(diǎn)B到直線l的距離都為5,且滿足上述條件的直線l共有n條,則n的值是()A.1B.2C.3D.4答案:與直線AB平行且到直線l的距離都為5的直線共有兩條,分別位于直線AB的兩側(cè),由線段AB的長度等于10,還有一條直線是線段AB的中垂線,故滿足上述條件的直線l共有3條,故選C.44.已知a,b為正數(shù),求證:≥.答案:證明略解析:1:∵a>0,b>0,∴≥,≥,兩式相加,得≥,∴≥.解析2.≥.∴≥.解析3.∵a>0,b>0,∴,∴欲證≥,即證≥,只要證

≥,只要證

≥,即證

≥,只要證a3+b3≥ab(a+b),只要證a2+b2-ab≥ab,即證(a-b)2≥0.∵(a-b)2≥0成立,∴原不等式成立.【名師指引】當(dāng)要證明的不等式形式上比較復(fù)雜時,常通過分析法尋求證題思路.“分析法”與“綜合法”是數(shù)學(xué)推理中常用的思維方法,特別是這兩種方法的綜合運(yùn)用能力,對解決實(shí)際問題有重要的作用.這兩種數(shù)學(xué)方法是高考考查的重要數(shù)學(xué)思維方法.45.b=ac(a,b,c∈R)是a、b、c成等比數(shù)列的()A.必要非充分條件B.充分非必要條件C.充要條件D.既非充分又非必要條件答案:當(dāng)b=a=0時,b=ac推不出a,x,b成等比數(shù)列成立,故不充分;當(dāng)a,b,c成等比數(shù)列且a<0,b<0,c<0時,得不到b=ac故不必要.故選:D46.擬定從甲地到乙地通話m分鐘的電話費(fèi)由f(m)=1.06(0.50×[m]+1)給出,其中m>0,[m]是大于或等于m的最小整數(shù)(例如[3]=3,[3.7]=4,[3.1]=4),則從甲地到乙地通話時間為5.5分鐘的話費(fèi)為()A.3.71B.3.97C.4.24D.4.77C答案:由[m]是大于或等于m的最小整數(shù)可得[5.5]=6.所以f(5.5)=1.06×(0.50×[5.5]+1)=1.06×4=4.24.故選:C.47.若函數(shù)f(2x+1)=x2-2x,則f(3)=______.答案:解法一:(換元法求解析式)令t=2x+1,則x=t-12則f(t)=(t-12)2-2t-12=14t2-32t+54∴f(x)=14x2-32x+54∴f(3)=-1解法二:(湊配法求解析式)∵f(2x+1)=x2-2x=14(2x+1)2-32(2x+1)+54∴f(x)=14x2-32x+54∴f(3)=-1解法三:(湊配法求解析式)∵f(2x+1)=x2-2x令2x+1=3則x=1此時x2-2x=-1∴f(3)=-1故為:-148.(選做題)

設(shè)集合A={x|x2﹣5x+4>0},B={x|x2﹣2ax+(a+2)=0},若A∩B≠,求實(shí)數(shù)a的取值范圍.答案:解:A={x|x2﹣5x+4>0}={x|x<1或x>4}.∵A∩B≠,∴方程x2﹣2ax+(a+2)=0有解,且至少有一解在區(qū)間(﹣∞,1)∪(4,+∞)內(nèi)直接求解情況比較多,考慮補(bǔ)集設(shè)全集U={a|△≥0}=(﹣∞,﹣1]∪[2,+∞),P={a|方程x2﹣2ax+(a+2)=0的兩根都在[1,4]內(nèi)}記f(x)=x2﹣2ax+(a+2),且f(x)=0的兩根都在[1,4]內(nèi)∴,∴,∴,∴∴實(shí)數(shù)a的取值范圍為.49.給出以下變量①吸煙,②性別,③宗教信仰,④國籍,其中屬于分類變量的有______.答案:①因?yàn)槲鼰煵皇欠诸愖兞?,是否吸煙才是分類變量,其他②③④屬于分類變量.故為:②③④?0.我市某機(jī)構(gòu)為調(diào)查2009年下半年落實(shí)中學(xué)生“陽光體育”活動的情況,設(shè)平均每人每天參加體育鍛煉時間為X(單位:分鐘),按鍛煉時間分下列四種情況統(tǒng)計(jì):①0~10分鐘;②11~20分鐘;③21~30分鐘;④30分鐘以上,有10000名中學(xué)生參加了此項(xiàng)活動,右圖是此次調(diào)查中某一項(xiàng)的流程圖,其輸出的結(jié)果是6200,則平均每天參加體育鍛煉時間在0~20分鐘內(nèi)的學(xué)生的頻率是()A.0.62B.0.38C.6200D.3800答案:由圖知輸出的S的值是運(yùn)動時間超過20分鐘的學(xué)生人數(shù),由于統(tǒng)計(jì)總?cè)藬?shù)是10000,又輸出的S=6200,故運(yùn)動時間不超過20分鐘的學(xué)生人數(shù)是3800事件“平均每天參加體育鍛煉時間在0~20分鐘內(nèi)的學(xué)生的”頻率是380010000=0.38故選B第2卷一.綜合題(共50題)1.設(shè)F1,F(xiàn)2分別是橢圓E:x2+y2b2=1(0<b<1)的左、右焦點(diǎn),過F1的直線l與E相交于A,B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列,則|AB|的長為______.答案:∵|AF2|,|AB|,|BF2|成等差數(shù)列∴|AF2|+|BF2|=2|AB|,又橢圓E:x2+y2b2=1(0<b<1)中a=1∴|AF2|+|AB|+|BF2|=4,∴3|AB|=4,∴|AB|=43故為:432.集合{1,2,3}的真子集總共有()A.8個B.7個C.6個D.5個答案:集合{1,2,3}的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7個.故選B.3.命題“存在x0∈R,2x0≤0”的否定是()

A.不存在x0∈R,2x0>0

B.存在x0∈R,2x0≥0

C.對任意的x∈R,2x≤0

D.對任意的x∈R,2x>0答案:D4.(文)將圖所示的一個直角三角形ABC(∠C=90°)繞斜邊AB旋轉(zhuǎn)一周,所得到的幾何體的正視圖是下面四個圖形中的(

A.

B.

C.

D.

答案:B5.如圖,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB為直徑作⊙O,連接OC,過點(diǎn)C作⊙O的切線CD,D為切點(diǎn),若sin∠OCD=45,則直徑AB=______.答案:連接OD,則OD⊥CD.∵∠ABC=90°,∴CD、CB為⊙O的兩條切線.∴根據(jù)切線長定理得:CD=BC=6.在Rt△OCD中,sin∠OCD=45,∴tan∠OCD=43,OD=tan∠OCD×CD=8.∴AB=2OD=16.故為16.6.如圖,正方體ABCD-A1B1C1D1中,點(diǎn)E是棱BC的中點(diǎn),點(diǎn)F

是棱CD上的動點(diǎn).

(Ⅰ)試確定點(diǎn)F的位置,使得D1E⊥平面AB1F;

(Ⅱ)當(dāng)D1E⊥平面AB1F時,求二面角C1-EF-A的余弦值以及BA1與面C1EF所成的角的大?。鸢福海↖)由題意可得:以A為原點(diǎn),分別以直線AB、AD、AA1為x軸、y軸、z軸建立空間直角坐標(biāo)系,不妨設(shè)正方體的棱長為1,且DF=x,則A1(0,0,1),A(0,0,0),B(1,0,0),D(0,1,0),B1(1,0,1),D1(0,1,1),E(1,12,0),F(xiàn)(x,1,0)所以D1E=(1,-12,-1),AB1=(1,0,1),AF=(x,1,0)由D1E⊥面AB1F?D1E⊥AB1且D1E⊥AF,所以D1E?AB1=0D1E?AF=0,可解得x=12所以當(dāng)點(diǎn)F是CD的中點(diǎn)時,D1E⊥平面AB1F.(II)當(dāng)D1E⊥平面AB1F時,F(xiàn)是CD的中點(diǎn),F(xiàn)(12,1,0)由正方體的結(jié)構(gòu)特征可得:平面AEF的一個法向量為m=(0,0,1),設(shè)平面C1EF的一個法向量為n=(x,y,z),在平面C1EF中,EC1=(0,12,1),EF=(-12,12,0),所以EC1?n=0EF?n

=0,即y=-2zx=y,所以取平面C1EF的一個法向量為n=(2,2,-1),所以cos<m,n>=-13,所以<m,n>=π-arccos13,又因?yàn)楫?dāng)把m,n都移向這個二面角內(nèi)一點(diǎn)時,m背向平面AEF,而n指向平面C1EF,所以二面角C1-EF-A的大小為π-arccos13又因?yàn)锽A1=(-1,0,1),所以cos<BA1,n>=-22,所以<BA1,n>=135°,∴BA1與平面C1EF所成的角的大小為45°.7.隨機(jī)變量ξ服從二項(xiàng)分布ξ~B(n,p),且Eξ=300,Dξ=200,則p等于()

A.

B.0

C.1

D.答案:D8.某學(xué)校為了了解學(xué)生的日平均睡眠時間(單位:h),隨機(jī)選擇了n名同學(xué)進(jìn)行調(diào)查,下表是這n名同學(xué)的日平均睡眠時間的頻率分布表:

序號(i)分組(睡眠時間)頻數(shù)(人數(shù))頻率1[4,5)40.082[5,6)x0.203[6,7)ay4[7,8)bz5[8,9]m0.O8(1)求n的值;若a=20,試確定x、y、z、m的值;

(2)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值(例如[4,5)的中點(diǎn)值4.5)作為代表.若據(jù)此計(jì)算的這n名學(xué)生的日平均睡眠時間的平均值為6.68.求a、b的值.答案:(1)樣本容量n=40.08=50,∴x=0.20×50=10,y=0.4,z=0.24,m=4(5分)(2)n=50,P(i=3)=a50,P(i=4)=b50平均時間為:4.5×0.08+5.5×0.2+6.5×a50+7.5×b50+8.5×0.08=6.68,即13a+15b=454

①(9分)又4+10+a+b+4=50,即a+b=32

②由①,②解得:a=13,b=1.(12分)9.如圖,海中有一小島,周圍3.8海里內(nèi)有暗礁.一軍艦從A地出發(fā)由西向東航行,望見小島B在北偏東75°,航行8海里到達(dá)C處,望見小島B在北偏東60°.若此艦不改變艦行的方向繼續(xù)前進(jìn),問此艦有沒有觸礁的危險?答案:在△ABC中,∵∠BAC=15°,∠ACB=150°,AC=8,可得:∠ABC=15°.∴BC=8,過B作AC的垂線垂足為D,在△BCD中,可得BD=BC?sin30°=4.∵4>3.8,∴沒有危險.10.在平行六面體ABCD-A′B′C′D′中,向量是()

A.有相同起點(diǎn)的向量

B.等長的向量

C.共面向量

D.不共面向量答案:C11.平行線3x-4y-8=0與6x-8y+3=0的距離為______.答案:6x-8y+3=0可化為3x-4y+32=0,故所求距離為|-8-32|32+(-4)2=1910,故為:191012.如圖過拋物線y2=2px(p>0)的焦點(diǎn)F的直線依次交拋物線及準(zhǔn)線于點(diǎn)A,B,C,若|BC|=2|BF|,且|AF|=3,則拋物線的方程為()

A.y2=x

B.y2=9x

C.y2=x

D.y2=3x

答案:D13.如圖,設(shè)P、Q為△ABC內(nèi)的兩點(diǎn),且AP=25AB+15AC,AQ=23AB+14AC,則△ABP的面積與△ABQ的面積之比為()A.15B.45C.14D.13答案:設(shè)AM=25AB,AN=15AC則AP=AM+AN由平行四邊形法則知NP∥AB

所以△ABP的面積△ABC的面積=|AN||AC|=15同理△ABQ的面積△ABC的面積=14故△ABP的面積△ABQ的面積=45為:45故選B.14.小李在一旅游景區(qū)附近租下一個小店面賣紀(jì)念品和T恤,由于經(jīng)營條件限制,他最多進(jìn)50件T恤和30件紀(jì)念品,他至少需要T恤和紀(jì)念品40件才能維持經(jīng)營,已知進(jìn)貨價為T恤每件36元,紀(jì)念品每件50元,現(xiàn)在他有2400元可進(jìn)貨,假設(shè)每件T恤的利潤是18元,每件紀(jì)念品的利潤是20元,問怎樣進(jìn)貨才能使他的利潤最大,最大利潤為多少?答案:設(shè)進(jìn)T恤x件,紀(jì)念品y件,可得利潤為z元,由題意得x、y滿足的約束條件為:

0≤x≤50

0≤y≤30

x+y≥4036x+48y≤2400,且x、y∈N*目標(biāo)函數(shù)z=18x+20y約束條件的可行域如圖所示:五邊形ABCDE的各個頂點(diǎn)坐標(biāo)分別為:A(40,0),B(50,0),C(50,252),D(803,30),E(10,30),當(dāng)直線l:z=18x+20y經(jīng)過C(50,252)時取最大值,∵x,y必為整數(shù),∴當(dāng)x=50,y=12時,z取最大值即進(jìn)50件T恤,12件紀(jì)念品時,可獲最大利潤,最大利潤為1140元.15.直線ax+by=1與圓x2+y2=1有兩不同交點(diǎn),則點(diǎn)P(a,b)與圓的位置關(guān)系為______.答案:圓心到直線ax+by=1的距離,1a2+b2,∵直線ax+by=1與圓x2+y2=1有兩不同交點(diǎn),∴1a2+b2<1即a2+b2>1.故為:點(diǎn)在圓外.16.函數(shù)y=ax+b與y=logbx且a>0,在同一坐標(biāo)系內(nèi)的圖象是()A.

B.

C.

D.

答案:∵a>0,則函數(shù)y=ax+b為增函數(shù),與y軸的交點(diǎn)為(0,b)當(dāng)0<b<1時,函數(shù)y=ax+b與y軸的交點(diǎn)在原點(diǎn)和(0,1)點(diǎn)之間,y=logbx為減函數(shù),D圖滿足要求;當(dāng)b>1時,函數(shù)y=ax+b與y軸的交點(diǎn)在(0,1)點(diǎn)上方,y=logbx為增函數(shù),不存在滿足條件的圖象;故選D17.已知P(B|A)=,P(A)=,則P(AB)=()

A.

B.

C.

D.答案:D18.若a>0,b>0,2a+3b=1,則ab的最大值為______.答案:∵a>0,b>0,2a+3b=1∴2a+3b=1≥26ab∴ab≤124故為12419.拋物線y=4x2的焦點(diǎn)坐標(biāo)是______.答案:由題意可知x2=14y∴p=18∴焦點(diǎn)坐標(biāo)為(0,116)故為(0,116)20.拋物線y=14x2的焦點(diǎn)坐標(biāo)是______.答案:拋物線y=14x2

即x2=4y,∴p=2,p2=1,故焦點(diǎn)坐標(biāo)是(0,1),故為(0,1).21.用0、1、2、3、4、5這6個數(shù)字,可以組成無重復(fù)數(shù)字的五位偶數(shù)的個數(shù)為______(用數(shù)字作答).答案:末尾是0時,有A55=120種;末尾不是0時,有2種選擇,首位有4種選擇,中間有A44,故有2×4×A44=192種故共有120+192=312種.故為:31222.命題“p:任意x∈R,都有x≥2”的否定是______.答案:命題“任意x∈R,都有x≥2”是全稱命題,否定時將量詞對任意的x∈R變?yōu)榇嬖趯?shí)數(shù)x,再將不等號≥變?yōu)椋技纯桑蕿椋捍嬖趯?shí)數(shù)x,使得x<2.23.若數(shù)據(jù)x1,x2,…,xn的方差為3,數(shù)據(jù)ax1+b,ax2+b,…,axn+b的標(biāo)準(zhǔn)差為23,則實(shí)數(shù)a的值為______.答案:數(shù)據(jù)ax1+b,ax2+b,…,axn+b的方差是數(shù)據(jù)x1,x2,…,xn的方差的a2倍;則數(shù)據(jù)ax1+b,ax2+b,…,axn+b的方差為3a2,標(biāo)準(zhǔn)差為3a2=23解得a=±2故為:±224.已知圓C的極坐標(biāo)方程是ρ=2sinθ,那么該圓的直角坐標(biāo)方程為

______,半徑長是

______.答案:把極坐標(biāo)方程是ρ=2sinθ的兩邊同時乘以ρ得:ρ2=2ρsinθ,∴x2+y2=2y,即x2+(y-1)2=1,表示以(0,1)為圓心,半徑等于1的圓,故為:x2+(y-1)2=1;1.25.已知按向量平移得到,則

.答案:3解析:由平移公式可得解得.26.已知、分別是與x軸、y軸方向相同的單位向量,且=-3+6,=-6+4,=--6,則一定共線的三點(diǎn)是()

A.A,B,C

B.A,B,D

C.A,C,D

D.B,C,D答案:C27.利用“直接插入排序法”給按從大到小的順序排序,

當(dāng)插入第四個數(shù)時,實(shí)際是插入哪兩個數(shù)之間(

)A.與B.與C.與D.與答案:B解析:先比較與,得;把插入到,得;把插入到,得;28.直線l1:x+ay=2a+2與直線l2:ax+y=a+1平行,則a=______.答案:直線l1:x+ay=2a+2即x+ay-2a-2=0;直線l2:ax+y=a+1即ax+y-a-1=0,∵直線l1與直線l2互相平行∴當(dāng)a≠0且a≠-1時,1a=a1≠-2a-2-a-1,解之得a=1當(dāng)a=0時,兩條直線垂直;當(dāng)a=-1時,兩條直線重合故為:129.一位母親記錄了她的兒子3~9歲的身高數(shù)據(jù),并由此建立身高與年齡的回歸模型為y=7.19x+73.93,用這個模型預(yù)測她的兒子10歲時的身高,則正確的敘述是()A.身高一定是145.83

cmB.身高在145.83

cm以上C.身高在145.83

cm左右D.身高在145.83

cm以下答案:∵身高與年齡的回歸模型為y=7.19x+73.93.∴可以預(yù)報(bào)孩子10歲時的身高是y=7.19x+73.93.=7.19×10+73.93=145.83則她兒子10歲時的身高在145.83cm左右.故選C.30.已知α,β表示兩個不同的平面,m為平面α內(nèi)的一條直線,則“α⊥β”是“m⊥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由平面與平面垂直的判定定理知如果m為平面α內(nèi)的一條直線,m⊥β,則α⊥β,反過來則不一定所以“α⊥β”是“m⊥β”的必要不充分條件.故選B.31.如圖,在等邊△ABC中,以AB為直徑的⊙O與BC相交于點(diǎn)D,連接AD,則∠DAC的度數(shù)為

______度.答案:∵AB是⊙O的直徑,∴∠ADB=90°,即AD⊥BC;又∵△ABC是等邊三角形,∴DA平分∠BAC,即∠DAC=12∠BAC=30°.故為:30.32.已知正四棱柱的對角線的長為6,且對角線與底面所成角的余弦值為33,則該正四棱柱的體積等于______.答案::如圖可知:∵AC1=6,cos∠AC1A1=33∴A1C1=2,AA1=2∴正四棱柱的體積等于A1B12?AA1=2故為:233.直線l1到l2的角為α,直線l2到l1的角為β,則cos=()

A.

B.

C.0

D.1答案:A34.已知△ABC的三個頂點(diǎn)A(-2,-1)、B(1,3)、C(2,2),則△ABC的重心坐標(biāo)為______.答案:設(shè)△ABC的重心坐標(biāo)為(x,y),則有三角形的重心坐標(biāo)公式可得x=-2+1+23=13,y=-1+3+23=43,故△ABC的重心坐標(biāo)為(13,43),故為(13,43).35.下列物理量中,不能稱為向量的是()A.質(zhì)量B.速度C.位移D.力答案:既有大小,又有方向的量叫做向量;質(zhì)量只有大小沒有方向,因此質(zhì)量不是向量.而速度、位移、力既有大小,又有方向,因此它們都是向量.故選A.36.將函數(shù)y=sin(x+)的圖象按向量=(-m,0)平移所得的圖象關(guān)于y軸對稱,則m最小正值是

A.

B.

C.

D.答案:A37.根據(jù)下列條件,求圓的方程:

(1)過點(diǎn)A(1,1),B(-1,3)且面積最小;

(2)圓心在直線2x-y-7=0上且與y軸交于點(diǎn)A(0,-4),B(0,-2).答案:(1)過A、B兩點(diǎn)且面積最小的圓就是以線段AB為直徑的圓,∴圓心坐標(biāo)為(0,2),半徑r=12|AB|=12(-1+1)2+(1-3)2=12×8=2,∴所求圓的方程為x2+(y-2)2=2;(2)由圓與y軸交于點(diǎn)A(0,-4),B(0,-2)可知,圓心在直線y=-3上,由2x-y-7=0y=-3,解得x=2y=-3,∴圓心坐標(biāo)為(2,-3),半徑r=5,∴所求圓的方程為(x-2)2+(y+3)2=5.38.若圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則()

A.k1<k2<k3

B.k2<k1<k3

C.k3<k2<k1

D.k1<k3<k2

答案:B39.平面α外一點(diǎn)P到平面α內(nèi)的四邊形的四條邊的距離都相等,且P在α內(nèi)的射影在四邊形內(nèi)部,則四邊形是()

A.梯形

B.圓外切四邊形

C.圓內(nèi)接四邊

D.任意四邊形答案:B40.對某種電子元件進(jìn)行壽命跟蹤調(diào)查,所得樣本頻率分布直方圖如圖,由圖可知:一批電子元件中,壽命在100~300小時的電子元件的數(shù)量與壽命在300~600小時的電子元件的數(shù)量的比大約是()A.12B.13C.14D.16答案:由于已知的頻率分布直方圖中組距為100,壽命在100~300小時的電子元件對應(yīng)的矩形的高分別為:12000,32000則壽命在100~300小時的電子元件的頻率為:100?(12000+32000)=0.2壽命在300~600小時的電子元件對應(yīng)的矩形的高分別為:1400,1250,32000則壽命在300~600小時子元件的頻率為:100?(1400+1250+32000)=0.8則壽命在100~300小時的電子元件的數(shù)量與壽命在300~600小時的電子元件的數(shù)量的比大約是0.2:0.8=14故選C41.在空間坐標(biāo)中,點(diǎn)B是A(1,2,3)在yOz坐標(biāo)平面內(nèi)的射影,O為坐標(biāo)原點(diǎn),則|OB|等于()

A.

B.

C.2

D.答案:B42.某企業(yè)甲、乙、丙三個生產(chǎn)車間的職工人數(shù)分別為120人,150人,180人,現(xiàn)用分層抽樣的方法抽出一個容量為n的樣本,樣本中甲車間有4人,那么此樣本的容量n=______.答案:每個個體被抽到的概率等于

4120=130,∴樣本容量n=(120+150+180)×130=15,故為:15.43.根據(jù)一組數(shù)據(jù)判斷是否線性相關(guān)時,應(yīng)選用(

A.散點(diǎn)圖

B.莖葉圖

C.頻率分布直方圖

D.頻率分布折線圖答案:A44.曲線的參數(shù)方程為(t是參數(shù)),則曲線是(

A.線段

B.雙曲線的一支

C.圓

D.射線答案:D45.某車間為了規(guī)定工時定額,需要確定加工零件所花費(fèi)的時間,為此進(jìn)行了5次試驗(yàn),根據(jù)收集到的數(shù)據(jù)(如下表),由最小二乘法求得回歸直線方程y=0.68x+54.6

表中有一個數(shù)據(jù)模糊不清,請你推斷出該數(shù)據(jù)的值為()A.68B.68.2C.69D.75答案:設(shè)表中有一個模糊看不清數(shù)據(jù)為m.由表中數(shù)據(jù)得:.x=30,.y=m+3075,由于由最小二乘法求得回歸方程y=0.68x+54.6.將x=30,y=m+3075代入回歸直線方程,得m=68.故選A.46.A、B為球面上相異兩點(diǎn),則通過A、B兩點(diǎn)可作球的大圓有()A.一個B.無窮多個C.零個D.一個或無窮多個答案:如果A,B兩點(diǎn)為球面上的兩極點(diǎn)(即球直徑的兩端點(diǎn))則通過A、B兩點(diǎn)可作球的無數(shù)個大圓如果A,B兩點(diǎn)不是球面上的兩極點(diǎn)(即球直徑的兩端點(diǎn))則通過A、B兩點(diǎn)可作球的一個大圓故選:D47.長為3的線段AB的端點(diǎn)A、B分別在x軸、y軸上移動,,則點(diǎn)C的軌跡是()

A.線段

B.圓

C.橢圓

D.雙曲線答案:C48.斜二測畫法的規(guī)則是:

(1)在已知圖形中建立直角坐標(biāo)系xoy,畫直觀圖

時,它們分別對應(yīng)x′和y′軸,兩軸交于點(diǎn)o′,使∠x′o′y′=______,它們確定的平面表示水平平面;

(2)

已知圖形中平行于x軸或y軸的線段,在直觀圖中分別畫成

______;

(3)已知圖形中平行于x軸的線段的長度,在直觀圖中

______;平行于y軸的線段,在直觀圖中

______.答案:按照斜二測畫法的規(guī)則填空故為:(1)45°或135°;(2)平行于x′軸和y′軸;(3)長度不變;長度減半49.利用斜二測畫法能得到的()

①三角形的直觀圖是三角形;

②平行四邊形的直觀圖是平行四邊形;

③正方形的直觀圖是正方形;

④菱形的直觀圖是菱形.

A.①②

B.①

C.③④

D.①②③④答案:A50.設(shè)a,b,c是三個不共面的向量,現(xiàn)在從①a+b;②a-b;③a+c;④b+c;⑤a+b+c中選出使其與a,b構(gòu)成空間的一個基底,則可以選擇的向量為______.答案:構(gòu)成基底只要三向量不共面即可,這里只要含有向量c即可,故③④⑤都是可以選擇的.故為:③④⑤(不唯一,也可以有其它的選擇)第3卷一.綜合題(共50題)1.求證:若圓內(nèi)接四邊形的兩條對角線互相垂直,則從對角線交點(diǎn)到一邊中點(diǎn)的線段長等于圓心到該邊對邊的距離.答案:以兩條對角線的交點(diǎn)為原點(diǎn)O、對角線所在直線為坐標(biāo)軸建立直角坐標(biāo)系,(如圖所示)

設(shè)A(-a,0),B(0,-b),C(c,0),D(0,d),則CD的中點(diǎn)E(c2,d2),AB的中點(diǎn)H(-a2,-b2).又圓心G到四個頂點(diǎn)的距離相等,故圓心G的橫坐標(biāo)等于AC中點(diǎn)的橫坐標(biāo),等于c-a2,圓心G的縱坐標(biāo)等于BD中點(diǎn)的縱坐標(biāo),等于d-b2.即圓心G(c-a2,d-b2),∴|OE|2=c2+d24,|GH|2=(c-a2+a2)2+(d-b2+b2)2=c2+d24,∴|OE|=|GH|,故要證的結(jié)論成立.2.設(shè)雙曲線x2a2-y2b2=1(a>b>0)的半焦距為c,直線l過(a,0),(0,b)兩點(diǎn),已知原點(diǎn)到直線l的距離為34c,則雙曲線的離心率為______.答案:∵直線l過(a,0),(0,b)兩點(diǎn),∴直線l的方程為:xa+yb=1,即bx+ay-ab=0,∵原點(diǎn)到直線l的距離為34c,∴|ab|a2+b2=3c4,又c2=a2+b2,∴3e4-16e2+16=0,∴e2=4,或e2=43.∵a>b>0,∴離心率為e=2或e=233;故為2或233.3.有五條線段長度分別為1、3、5、7、9,從這5條線段中任取3條,則所取3條線段能構(gòu)成一個三角形的概率為()A.110B.310C.12D.710答案:由題意知本題是一個古典概型,∵試驗(yàn)發(fā)生包含的所有事件是從五條線段中取三條共有C53種結(jié)果,而滿足條件的事件是3、5、7;3、7、9;5、7、9,三種結(jié)果,∴由古典概型公式得到P=3C35=310,故選B.4.已知a=(1,0),b=(m,m)(m>0),則<a,b>=______.答案:∵b=(m,m)(m>0),∴b與第一象限的角平分線同向,且由原點(diǎn)指向遠(yuǎn)處,而a=(1,0)同橫軸的正方向同向,∴<a,b>=45°,故為:45°5.已知數(shù)列{an}前n項(xiàng)的和為Sn,且滿足an=n2

(n∈N*).

(Ⅰ)求s1、s2、s3的值;

(Ⅱ)用數(shù)學(xué)歸納法證明sn=n(n+1)(2n+1)6

(n∈N*).答案:(Ⅰ)∵an=n2,n∈N*∴s1=a1=1,s2=a1+a2=1+4=5,s3=a1+a2+a3=1+4+9=14.…(6分)(Ⅱ)證明:(1)當(dāng)n=1時,左邊=s1=1,右邊=1×(1+1)(2+1)6=1,所以等式成立.…(8分)(2)假設(shè)n=k(k∈N*)時結(jié)論成立,即Sk=k(k+1)(2k+1)6,…(10分)那么,Sk+1=Sk+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6即n=k+1時,等式也成立.…(13分)根據(jù)(1)(2)可知對任意的正整數(shù)n∈N*都成立.…(14分)6.①附中高一年級聰明的學(xué)生;

②直角坐標(biāo)系中橫、縱坐標(biāo)相等的點(diǎn);

③不小于3的正整數(shù);

④3的近似值;

考察以上能組成一個集合的是______.答案:因?yàn)橹苯亲鴺?biāo)系中橫、縱坐標(biāo)相等的點(diǎn)是確定的,所以②能構(gòu)成集合;不小于3的正整數(shù)是確定的,所以③能構(gòu)成集合;附中高一年級聰明的學(xué)生,不是確定的,原因是沒法界定什么樣的學(xué)生為聰明的,所以①不能構(gòu)成集合;3的近似值沒說明精確到哪一位,所以是不確定的,故④不能構(gòu)成集合.7.已知復(fù)數(shù)z=2+i,則z2對應(yīng)的點(diǎn)在第()象限.A.ⅠB.ⅡC.ⅢD.Ⅳ答案:由z=2+i,則z2=(2+i)2=22+4i+i2=3+4i.所以,復(fù)數(shù)z2的實(shí)部等于3,虛部等于4.所以z2對應(yīng)的點(diǎn)在第Ⅰ象限.故選A.8.已知M和N分別是四面體OABC的邊OA,BC的中點(diǎn),且,若=a,=b,=c,則用a,b,c表示為()

A.

B.

C.

D.

答案:B9.如圖所示,CD為Rt△ABC斜邊AB邊上的中線,CE⊥CD,CE=103,連接DE交BC于點(diǎn)F,AC=4,BC=3.

求證:(1)△ABC∽△EDC;

(2)DF=EF.答案:證明:(1)∵CD為Rt△ABC斜邊AB邊上的中線∴CD=12AB=12AC2+BC2=52.∴CECD=10352=43=ACBC,∠ACB=∠DCE=90°.∴△ABC∽△EDC.(2)因?yàn)椤鰽BC∽△EDC∴∠B=∠CDE,∠E=∠A.由CD為Rt△ABC斜邊AB邊上的中線得:CD=AD=DB?∠B=∠DCB,∠A=∠DCA∴∠DCB=∠CDE?DF=CF;又因?yàn)椋骸螪CA+∠DCB=∠DCB+∠BCE=90°;∴∠DCA=∠BCE=∠A=∠E∴CF=EF.∴DF=EF.10.已知向量a=(x,1,0),b=(1,2,3),若a⊥b,則x=______.答案:∵向量a=(x,1,0),b=(1,2,3),a⊥b,∴a?b=x+2+0=0,x=-2.故為:-2.11.已知圓C:x2+y2=12,直線l:4x+3y=25.

(1)圓C的圓心到直線l的距離為______;

(2)圓C上任意一點(diǎn)A到直線l的距離小于2的概率為______.答案:(1)由題意知圓x2+y2=12的圓心是(0,0),圓心到直線的距離是d=2532+42=5,(2)由題意知本題是一個幾何概型,試驗(yàn)發(fā)生包含的事件是從這個圓上隨機(jī)的取一個點(diǎn),對應(yīng)的圓上整個圓周的弧長,滿足條件的事件是到直線l的距離小于2,過圓心做一條直線交直線l與一點(diǎn),根據(jù)上一問可知圓心到直線的距離是5,在這條垂直于直線l的半徑上找到圓心的距離為3的點(diǎn)做半徑的垂線,根據(jù)弦心距,半徑,弦長之間組成的直角三角形得到符合條件的弧長對應(yīng)的圓心角是60°根據(jù)幾何概型的概率公式得到P=60°360°=16故為:5;1612.下列說法:

①在殘差圖中,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域內(nèi),說明選擇的模型比較合適;

②用相關(guān)指數(shù)可以刻畫回歸的效果,值越大說明模型的擬和效果越好;

③比較兩個模型的擬和效果,可以比較殘差平方和的大小,殘差平方和越小的模型擬和效果越好.

其中說法正確的個數(shù)為()

A.0個

B.1個

C.2個

D.3個答案:C13.若雙曲線的漸近線方程為y=±34x,則雙曲線的離心率為______.答案:由題意可得,當(dāng)焦點(diǎn)在x軸上時,ba=34,∴ca=a2+b2a=a2+(3a4)2a=54.當(dāng)焦點(diǎn)在y軸上時,ab=34,∴ca=a2+b2a=a2+(4a3)2a=53,故為:53

或54.14.要從已編號(1~60)的60枚最新研制的某型導(dǎo)彈中隨機(jī)抽取6枚來進(jìn)行發(fā)射試驗(yàn),用每部分選取的號碼間隔一樣的系統(tǒng)抽樣方法確定所選取的6枚導(dǎo)彈的編號可能是()

A.5、10、15、20、25、30

B.3、13、23、33、43、53

C.1、2、3、4、5、6

D.2、4、8、16、32、48答案:B15.如圖,已知⊙O的直徑AB=5,C為圓周上一點(diǎn),BC=4,過點(diǎn)C作⊙O的切線l,過點(diǎn)A作l的垂線AD,垂足為D,則CD=______.

答案:如圖,連接OC,由題意DC是切線可得出OC⊥DC,再過過A作AE⊥OC于E,故有四邊形AECD是矩形,可得AE=CD又⊙O的直徑AB=5,C為圓周上一點(diǎn),BC=4,∴AC=3故S△AOC=12S△ABC=12×12×4×3=3又OC=52,故12×52×AE=3解得AE=125所以CD=125故為:125.16.口袋內(nèi)有100個大小相同的紅球、白球和黑球,其中有45個紅球,從中摸出1個球,摸出白球的概率為0.23,則摸出黑球的概率為______.答案:∵口袋內(nèi)有100個大小相同的紅球、白球和黑球從中摸出1個球,摸出白球的概率為0.23,∴口袋內(nèi)白球數(shù)為32個,又∵有45個紅球,∴為32個.從中摸出1個球,摸出黑球的概率為32100=0.32故為0.3217.過點(diǎn)P(-3,0)且傾斜角為30°的直線和曲線x=t+1ty=t-1t(t為參數(shù))相交于A,B兩點(diǎn).求線段AB的長.答案:直線的參數(shù)方程為

x

=

-3

+

32sy

=

12s

(s

為參數(shù)),曲線x=t+1ty=t-1t

可以化為

x2-y2=4.將直線的參數(shù)方程代入上式,得

s2-63s+

10

=

0.設(shè)A、B對應(yīng)的參數(shù)分別為s1,s2,∴s1+

s2=

6

3,s1?s2=10.∴AB=|s1-s2|=(s1+s2)2-4s1s2=217.18.(x3+1xx)10的展開式中的第四項(xiàng)是______.答案:由二項(xiàng)式定理的通項(xiàng)公式可知(x3+1xx)10的展開式中的第四項(xiàng)是:C310(x3)7(1xx)3=120x16?x.故為:120x16?x.19.如圖,⊙O中弦AB,CD相交于點(diǎn)P,已知AP=3,BP=2,CP=1,則DP=()

A.3

B.4

C.5

D.6答案:D20.某海域有A、B兩個島嶼,B島在A島正東40海里處.經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線像一個橢圓,其焦點(diǎn)恰好是A、B兩島.曾有漁船在距A島正西20海里發(fā)現(xiàn)過魚群.某日,研究人員在A、B兩島同時用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),A、B兩島收到魚群反射信號的時間比為5:3.你能否確定魚群此時分別與A、B兩島的距離?答案:以AB的中點(diǎn)為原點(diǎn),AB所在直線為x軸建立直角坐標(biāo)系設(shè)橢圓方程為:x2a2+y2b2=1(a>b>0)且c=a2-b2------(3分)因?yàn)榻裹c(diǎn)A的正西方向橢圓上的點(diǎn)為左頂點(diǎn),所以a-c=20------(5分)又|AB|=2c=40,則c=20,a=40,故b=203------(7分)所以魚群的運(yùn)動軌跡方程是x21600+y21200=1------(8分)由于A,B兩島收到魚群反射信號的時間比為5:3,因此設(shè)此時距A,B兩島的距離分別為5k,3k-------(10分)由橢圓的定義可知5k+3k=2×40=80?k=10--------(13分)即魚群分別距A,B兩島的距離為50海里和30海里.------(14分)21.設(shè)x,y∈R,且滿足x2+y2=1,求x+y的最大值為()

A.

B.

C.2

D.1答案:A22.BC是Rt△ABC的斜邊,AP⊥平面ABC,PD⊥BC于點(diǎn)D,則圖中共有直角三角形的個數(shù)是()A.8B.7C.6D.5答案:∵AP⊥平面ABC,BC?平面ABC,∴PA⊥BC,又PD⊥BC于D,連接AD,PD∩PA=A,∴BC⊥平面PAD,AD?平面PAD,∴BC⊥AD;又BC是Rt△ABC的斜邊,∴∠BAC為直角,∴圖中的直角三角形有:△ABC,△PAC,△PAB,△PAD,△PDC,△PDB,△ADC,△ADB.故為:8.23.(1+2x)10的展開式的第4項(xiàng)是______.答案:(1+2x)10的展開式的第4項(xiàng)為T4=C310

(2X)3=960x3,故為960x3.24.一個水平放置的平面圖形,其斜二測直觀圖是一個等腰梯形,其底角為45°,腰和上底均為1(如圖),則平面圖形的實(shí)際面積為______.答案:恢復(fù)后的原圖形為一直角梯形,上底為1,高為2,下底為1+2,S=12(1+2+1)×2=2+2.故為:2+225.設(shè)隨機(jī)變量ξ服從正態(tài)分布N(μ,σ2),且函數(shù)f(x)=x2+4x+ξ沒有零點(diǎn)的概率為,則μ為()

A.1

B.4

C.2

D.不能確定答案:B26.關(guān)于直線a,b,c以及平面M,N,給出下面命題:

①若a∥M,b∥M,則a∥b

②若a∥M,b⊥M,則b⊥a

③若a∥M,b⊥M,且c⊥a,c⊥b,則c⊥M

④若a⊥M,a∥N,則M⊥N,

其中正確命題的個數(shù)為()

A.0個

B.1個

C.2個

D.3個答案:C27.如圖,在△ABC中,,,則實(shí)數(shù)λ的值為()

A.

B.

C.

D.

答案:D28.在平面直角坐標(biāo)系xOy中,雙曲線x24-y212=1上一點(diǎn)M,點(diǎn)M的橫坐標(biāo)是3,則M到雙曲線右焦點(diǎn)的距離是______答案:MFd=e=2,d為點(diǎn)M到右準(zhǔn)線x=1的距離,則d=2,∴MF=4.故為429.極坐標(biāo)方程ρcos2θ=0表示的曲線為()

A.極點(diǎn)

B.極軸

C.一條直線

D.兩條相交直線答案:D30.設(shè)F為拋物線y2=ax(a>0)的焦點(diǎn),點(diǎn)P在拋物線上,且其到y(tǒng)軸的距離與到點(diǎn)F的距離之比為1:2,則|PF|等于()

A.

B.a(chǎn)

C.

D.答案:D31.已知f(x)=x2+4x+8,則f(3)=______.答案:f(3)=32+4×3+8=29,故為:29.32.已知|a|<1,|b|<1,求證:<1.答案:證明略解析:∵<1<1a2+b2+2ab<1+2ab+a2b2a2b2-a2-b2+1>0

(a2-1)(b2-1)>0又|a|<1,|b|<1,∴(a2-1)(b2-1)>0.∴原不等式成立.33.隋機(jī)變量X~B(6,),則P(X=3)=()

A.

B.

C.

D.答案:C34.平面內(nèi)有兩個定點(diǎn)F1(-5,0)和F2(5,0),動點(diǎn)P滿足條件|PF1|-|PF2|=6,則動點(diǎn)P的軌跡方程是()A.x216-y29=1(x≤-4)B.x29-y216=1(x≤-3)C.x216-y29=1(x>≥4)D.x29-y216=1(x≥3)答案:由|PF1|-|PF2|=6<|F1F2|知,點(diǎn)P的軌跡是以F1、F2為焦點(diǎn)的雙曲線右支,得c=5,2a=6,∴a=3,∴b2=16,故動點(diǎn)P的軌跡方程是x29-y216=1(x≥3).故選D.35.用反證法證明命題“若a、b∈N,ab能被2整除,則a,b中至少有一個能被2整除”,那么反設(shè)的內(nèi)容是______.答案:根據(jù)用反證法證明數(shù)學(xué)命題的步驟,應(yīng)先假設(shè)要證命題的否定成立,而要證命題的否定為:“a,b都不能被2整除”,故為:a、b都不能被2整除.36.若點(diǎn)A的坐標(biāo)為(3,2),F(xiàn)是拋物線y2=2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論