2023屆廣州市白云區(qū)中考五模數(shù)學試題含解析_第1頁
2023屆廣州市白云區(qū)中考五模數(shù)學試題含解析_第2頁
2023屆廣州市白云區(qū)中考五模數(shù)學試題含解析_第3頁
2023屆廣州市白云區(qū)中考五模數(shù)學試題含解析_第4頁
2023屆廣州市白云區(qū)中考五模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若,則的值為()A.12 B.2 C.3 D.02.如圖1,等邊△ABC的邊長為3,分別以頂點B、A、C為圓心,BA長為半徑作弧AC、弧CB、弧BA,我們把這三條弧所組成的圖形稱作萊洛三角形,顯然萊洛三角形仍然是軸對稱圖形.設(shè)點I為對稱軸的交點,如圖2,將這個圖形的頂點A與等邊△DEF的頂點D重合,且AB⊥DE,DE=2π,將它沿等邊△DEF的邊作無滑動的滾動,當它第一次回到起始位置時,這個圖形在運動中掃過區(qū)域面積是()A.18π B.27π C.π D.45π3.如圖,P為⊙O外一點,PA、PB分別切⊙O于點A、B,CD切⊙O于點E,分別交PA、PB于點C、D,若PA=6,則△PCD的周長為()A.8 B.6 C.12 D.104.某商品價格為元,降價10%后,又降價10%,因銷售量猛增,商店決定再提價20%,提價后這種商品的價格為()A.0.96元 B.0.972元 C.1.08元 D.元5.下列運算正確的是()A.(﹣2a)3=﹣6a3 B.﹣3a2?4a3=﹣12a5C.﹣3a(2﹣a)=6a﹣3a2 D.2a3﹣a2=2a6.如圖,直線a∥b,∠ABC的頂點B在直線a上,兩邊分別交b于A,C兩點,若∠ABC=90°,∠1=40°,則∠2的度數(shù)為()A.30° B.40° C.50° D.60°7.如圖,AB是⊙O的直徑,點C、D是圓上兩點,且∠AOC=126°,則∠CDB=()A.54° B.64° C.27° D.37°8.已知x=2是關(guān)于x的一元二次方程x2﹣x﹣2a=0的一個解,則a的值為()A.0 B.﹣1 C.1 D.29.如圖,在矩形紙片ABCD中,已知AB=,BC=1,點E在邊CD上移動,連接AE,將多邊形ABCE沿直線AE折疊,得到多邊形AFGE,點B、C的對應(yīng)點分別為點F、G.在點E從點C移動到點D的過程中,則點F運動的路徑長為()A.π B.π C.π D.π10.在一次中學生田徑運動會上,參加跳遠的名運動員的成績?nèi)缦卤硭?成績(米)人數(shù)則這名運動員成績的中位數(shù)、眾數(shù)分別是()A. B. C., D.二、填空題(共7小題,每小題3分,滿分21分)11.已知(x、y、z≠0),那么的值為_____.12.如圖,反比例函數(shù)y=(x<0)的圖象經(jīng)過點A(﹣2,2),過點A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點P(0,t),過點P作直線OA的垂線l,以直線l為對稱軸,點B經(jīng)軸對稱變換得到的點B'在此反比例函數(shù)的圖象上,則t的值是()A.1+ B.4+ C.4 D.-1+13.如圖,矩形ABCD中,AB=2,點E在AD邊上,以E為圓心,EA長為半徑的⊙E與BC相切,交CD于點F,連接EF.若扇形EAF的面積為43π,則14.已知線段AB=10cm,C為線段AB的黃金分割點(AC>BC),則BC=_____.15.計算:(a2)2=_____.16.如圖,⊙O的外切正六邊形ABCDEF的邊長為2,則圖中陰影部分的面積為_____.17.若|a|=2016,則a=___________.三、解答題(共7小題,滿分69分)18.(10分)在正方形ABCD中,M是BC邊上一點,且點M不與B、C重合,點P在射線AM上,將線段AP繞點A順時針旋轉(zhuǎn)90°得到線段AQ,連接BP,DQ.(1)依題意補全圖1;(2)①連接DP,若點P,Q,D恰好在同一條直線上,求證:DP2+DQ2=2AB2;②若點P,Q,C恰好在同一條直線上,則BP與AB的數(shù)量關(guān)系為:.19.(5分)先化簡:,再請你選擇一個合適的數(shù)作為x的值代入求值.20.(8分)某校九年級數(shù)學測試后,為了解學生學習情況,隨機抽取了九年級部分學生的數(shù)學成績進行統(tǒng)計,得到相關(guān)的統(tǒng)計圖表如下.成績/分120﹣111110﹣101100﹣9190以下成績等級ABCD請根據(jù)以上信息解答下列問題:(1)這次統(tǒng)計共抽取了名學生的數(shù)學成績,補全頻數(shù)分布直方圖;(2)若該校九年級有1000名學生,請據(jù)此估計該校九年級此次數(shù)學成績在B等級以上(含B等級)的學生有多少人?(3)根據(jù)學習中存在的問題,通過一段時間的針對性復習與訓練,若A等級學生數(shù)可提高40%,B等級學生數(shù)可提高10%,請估計經(jīng)過訓練后九年級數(shù)學成績在B等級以上(含B等級)的學生可達多少人?21.(10分)某市對城區(qū)部分路段的人行道地磚、綠化帶、排水管等公用設(shè)施進行全面更新改造,根據(jù)市政建設(shè)的需要,需在35天內(nèi)完成工程.現(xiàn)有甲、乙兩個工程隊有意承包這項工程,經(jīng)調(diào)查知道,乙工程隊單獨完成此項工程的時間是甲工程隊單獨完成此項工程時間的2倍,若甲、乙兩工程隊合作,只需10天完成.甲、乙兩個工程隊單獨完成此項工程各需多少天?若甲工程隊每天的工程費用是4萬元,乙工程隊每天的工程費用是2.5萬元,請你設(shè)計一種方案,既能按時完工,又能使工程費用最少.22.(10分)如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點A(m,﹣2).求反比例函數(shù)的解析式;觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;若雙曲線上點C(2,n)沿OA方向平移個單位長度得到點B,判斷四邊形OABC的形狀并證明你的結(jié)論.23.(12分)如圖,在△ABC中,AB=AC,點P、D分別是BC、AC邊上的點,且∠APD=∠B,求證:AC?CD=CP?BP;若AB=10,BC=12,當PD∥AB時,求BP的長.24.(14分)如圖,某校自行車棚的人字架棚頂為等腰三角形,D是AB的中點,中柱CD=1米,∠A=27°,求跨度AB的長(精確到0.01米).

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

先根據(jù)得出,然后利用提公因式法和完全平方公式對進行變形,然后整體代入即可求值.【詳解】∵,∴,∴.故選:A.【點睛】本題主要考查整體代入法求代數(shù)式的值,掌握完全平方公式和整體代入法是解題的關(guān)鍵.2、B【解析】

先判斷出萊洛三角形等邊△DEF繞一周掃過的面積如圖所示,利用矩形的面積和扇形的面積之和即可.【詳解】如圖1中,∵等邊△DEF的邊長為2π,等邊△ABC的邊長為3,∴S矩形AGHF=2π×3=6π,由題意知,AB⊥DE,AG⊥AF,

∴∠BAG=120°,∴S扇形BAG==3π,∴圖形在運動過程中所掃過的區(qū)域的面積為3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;故選B.【點睛】本題考查軌跡,弧長公式,萊洛三角形的周長,矩形,扇形面積公式,解題的關(guān)鍵是判斷出萊洛三角形繞等邊△DEF掃過的圖形.3、C【解析】

由切線長定理可求得PA=PB,AC=CE,BD=ED,則可求得答案.【詳解】∵PA、PB分別切⊙O于點A、B,CD切⊙O于點E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周長為12,故選:C.【點睛】本題主要考查切線的性質(zhì),利用切線長定理求得PA=PB、AC=CE和BD=ED是解題的關(guān)鍵.4、B【解析】

提價后這種商品的價格=原價×(1-降低的百分比)(1-百分比)×(1+增長的百分比),把相關(guān)數(shù)值代入求值即可.【詳解】第一次降價后的價格為a×(1-10%)=0.9a元,第二次降價后的價格為0.9a×(1-10%)=0.81a元,∴提價20%的價格為0.81a×(1+20%)=0.972a元,故選B.【點睛】本題考查函數(shù)模型的選擇與應(yīng)用,考查列代數(shù)式,得到第二次降價后的價格是解決本題的突破點;得到提價后這種商品的價格的等量關(guān)系是解決本題的關(guān)鍵.5、B【解析】

先根據(jù)同底數(shù)冪的乘法法則進行運算即可?!驹斀狻緼.;故本選項錯誤;B.﹣3a2?4a3=﹣12a5;故本選項正確;C.;故本選項錯誤;D.不是同類項不能合并;故本選項錯誤;故選B.【點睛】先根據(jù)同底數(shù)冪的乘法法則,冪的乘方,積的乘方,合并同類項分別求出每個式子的值,再判斷即可.6、C【解析】

依據(jù)平行線的性質(zhì),可得∠BAC的度數(shù),再根據(jù)三角形內(nèi)和定理,即可得到∠2的度數(shù).【詳解】解:∵a∥b,∴∠1=∠BAC=40°,又∵∠ABC=90°,∴∠2=90°?40°=50°,故選C.【點睛】本題考查的是平行線的性質(zhì),用到的知識點為:兩直線平行,內(nèi)錯角相等.7、C【解析】

由∠AOC=126°,可求得∠BOC的度數(shù),然后由圓周角定理,求得∠CDB的度數(shù).【詳解】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°故選:C.【點睛】此題考查了圓周角定理.注意在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.8、C【解析】試題分析:把方程的解代入方程,可以求出字母系數(shù)a的值.∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.故本題選C.【考點】一元二次方程的解;一元二次方程的定義.9、D【解析】

點F的運動路徑的長為弧FF'的長,求出圓心角、半徑即可解決問題.【詳解】如圖,點F的運動路徑的長為弧FF'的長,在Rt△ABC中,∵tan∠BAC=,∴∠BAC=30°,∵∠CAF=∠BAC=30°,∴∠BAF=60°,∴∠FAF′=120°,∴弧FF'的長=.故選D.【點睛】本題考查了矩形的性質(zhì)、特殊角的三角函數(shù)值、含30°角的直角三角形的性質(zhì)、弧長公式等知識,解題的關(guān)鍵是判斷出點F運動的路徑.10、D【解析】

根據(jù)中位數(shù)、眾數(shù)的定義即可解決問題.【詳解】解:這些運動員成績的中位數(shù)、眾數(shù)分別是4.70,4.1.故選:D.【點睛】本題考查中位數(shù)、眾數(shù)的定義,解題的關(guān)鍵是記住中位數(shù)、眾數(shù)的定義,屬于中考基礎(chǔ)題.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】解:由(x、y、z≠0),解得:x=3z,y=2z,原式===1.故答案為1.點睛:本題考查了分式的化簡求值和解二元一次方程組,難度適中,關(guān)鍵是先用z把x與y表示出來再進行代入求解.12、A【解析】

根據(jù)反比例函數(shù)圖象上點的坐標特征由A點坐標為(-2,2)得到k=-4,即反比例函數(shù)解析式為y=-,且OB=AB=2,則可判斷△OAB為等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后軸對稱的性質(zhì)得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y軸,則點B的坐標可表示為(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到滿足條件的t的值.【詳解】如圖,∵點A坐標為(-2,2),∴k=-2×2=-4,∴反比例函數(shù)解析式為y=-,∵OB=AB=2,∴△OAB為等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵點B和點B′關(guān)于直線l對稱,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y軸,∴點B′的坐標為(-,t),∵PB=PB′,∴t-2=|-|=,整理得t2-2t-4=0,解得t1=,t2=1-(不符合題意,舍去),∴t的值為.故選A.【點睛】本題是反比例函數(shù)的綜合題,解決本題要掌握反比例函數(shù)圖象上點的坐標特征、等腰直角三角形的性質(zhì)和軸對稱的性質(zhì)及會用求根公式法解一元二次方程.13、1【解析】分析:設(shè)∠AEF=n°,由題意nπ×2詳解:設(shè)∠AEF=n°,由題意nπ×2∴∠AEF=120°,∴∠FED=60°,∵四邊形ABCD是矩形,∴BC=AD,∠D=90°,∴∠EFD=10°,∴DE=12∴BC=AD=2+1=1,故答案為1.點睛:本題考查切線的性質(zhì)、矩形的性質(zhì)、扇形的面積公式、直角三角形10度角性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,屬于中考??碱}型.14、(15-55).【解析】試題解析:∵C為線段AB的黃金分割點(AC>BC),∴AC=5-12AB=AC=5-1∴BC=AB-AC=10-(55-5)=(15-55)cm.考點:黃金分割.15、a1.【解析】

根據(jù)冪的乘方法則進行計算即可.【詳解】故答案為【點睛】考查冪的乘方,掌握運算法則是解題的關(guān)鍵.16、【解析】

由于六邊形ABCDEF是正六邊形,所以∠AOB=60°,故△OAB是等邊三角形,OA=OB=AB=2,設(shè)點G為AB與⊙O的切點,連接OG,則OG⊥AB,OG=OA?sin60°,再根據(jù)S陰影=S△OAB-S扇形OMN,進而可得出結(jié)論.【詳解】∵六邊形ABCDEF是正六邊形,

∴∠AOB=60°,

∴△OAB是等邊三角形,OA=OB=AB=2,

設(shè)點G為AB與⊙O的切點,連接OG,則OG⊥AB,

∴∴S陰影=S△OAB-S扇形OMN=故答案為【點睛】考查不規(guī)則圖形面積的計算,掌握扇形的面積公式是解題的關(guān)鍵.17、±1【解析】試題分析:根據(jù)零指數(shù)冪的性質(zhì)(),可知|a|=1,座椅可知a=±1.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(1)①詳見解析;②BP=AB.【解析】

(1)根據(jù)要求畫出圖形即可;(1)①連接BD,如圖1,只要證明△ADQ≌△ABP,∠DPB=90°即可解決問題;②結(jié)論:BP=AB,如圖3中,連接AC,延長CD到N,使得DN=CD,連接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;【詳解】(1)解:補全圖形如圖1:(1)①證明:連接BD,如圖1,∵線段AP繞點A順時針旋轉(zhuǎn)90°得到線段AQ,∴AQ=AP,∠QAP=90°,∵四邊形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠1=∠1.∴△ADQ≌△ABP,∴DQ=BP,∠Q=∠3,∵在Rt△QAP中,∠Q+∠QPA=90°,∴∠BPD=∠3+∠QPA=90°,∵在Rt△BPD中,DP1+BP1=BD1,又∵DQ=BP,BD1=1AB1,∴DP1+DQ1=1AB1.②解:結(jié)論:BP=AB.理由:如圖3中,連接AC,延長CD到N,使得DN=CD,連接AN,QN.∵△ADQ≌△ABP,△ANQ≌△ACP,∴DQ=PB,∠AQN=∠APC=45°,∵∠AQP=45°,∴∠NQC=90°,∵CD=DN,∴DQ=CD=DN=AB,∴PB=AB.【點睛】本題考查正方形的性質(zhì),旋轉(zhuǎn)變換、勾股定理等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考壓軸19、x﹣1,1.【解析】

先通分計算括號里的,再計算括號外的,最后根據(jù)分式性質(zhì),找一個恰當?shù)臄?shù)2(此數(shù)不唯一)代入化簡后的式子計算即可.【詳解】解:原式==x﹣1,根據(jù)分式的意義可知,x≠0,且x≠±1,當x=2時,原式=2﹣1=1.【點睛】本題主要考查分式的化簡求值,化簡過程中要注意運算順序,化簡結(jié)果是最簡形式,難點在于當未知數(shù)的值沒有明確給出時,所選取的未知數(shù)的值必須使原式的各分式都有意義,且除數(shù)不能為零.20、(1)1人;補圖見解析;(2)10人;(3)610名.【解析】

(1)用總?cè)藬?shù)乘以A所占的百分比,即可得到總?cè)藬?shù);再用總?cè)藬?shù)乘以A等級人數(shù)所占比例可得其人數(shù),繼而根據(jù)各等級人數(shù)之和等于總?cè)藬?shù)可得D等級人數(shù),據(jù)此可補全條形圖;

(2)用總?cè)藬?shù)乘以(A的百分比+B的百分比),即可解答;

(3)先計算出提高后A,B所占的百分比,再乘以總?cè)藬?shù),即可解答.【詳解】解:(1)本次調(diào)查抽取的總?cè)藬?shù)為15÷=1(人),則A等級人數(shù)為1×=10(人),D等級人數(shù)為1﹣(10+15+5)=20(人),補全直方圖如下:故答案為1.(2)估計該校九年級此次數(shù)學成績在B等級以上(含B等級)的學生有1000×=10(人);(3)∵A級學生數(shù)可提高40%,B級學生數(shù)可提高10%,∴B級學生所占的百分比為:30%×(1+10%)=33%,A級學生所占的百分比為:20%×(1+40%)=28%,∴1000×(33%+28%)=610(人),∴估計經(jīng)過訓練后九年級數(shù)學成績在B以上(含B級)的學生可達610名.【點睛】考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.21、(1)甲工程隊單獨完成該工程需15天,則乙工程隊單獨完成該工程需30天;(2)應(yīng)該選擇甲工程隊承包該項工程.【解析】

(1)設(shè)甲工程隊單獨完成該工程需x天,則乙工程隊單獨完成該工程需2x天.再根據(jù)“甲、乙兩隊合作完成工程需要10天”,列出方程解決問題;

(2)首先根據(jù)(1)中的結(jié)果,從而可知符合要求的施工方案有三種:方案一:由甲工程隊單獨完成;方案二:由乙工程隊單獨完成;方案三:由甲乙兩隊合作完成.針對每一種情況,分別計算出所需的工程費用.【詳解】(1)設(shè)甲工程隊單獨完成該工程需天,則乙工程隊單獨完成該工程需天.根據(jù)題意得:方程兩邊同乘以,得解得:經(jīng)檢驗,是原方程的解.∴當時,.答:甲工程隊單獨完成該工程需15天,則乙工程隊單獨完成該工程需30天.(2)因為甲乙兩工程隊均能在規(guī)定的35天內(nèi)單獨完成,所以有如下三種方案:方案一:由甲工程隊單獨完成.所需費用為:(萬元);方案二:由乙工程隊單獨完成.所需費用為:(萬元);方案三:由甲乙兩隊合作完成.所需費用為:(萬元).∵∴應(yīng)該選擇甲工程隊承包該項工程.【點睛】本題考查分式方程在工程問題中的應(yīng)用.分析題意,找到關(guān)鍵描述語,找到合適的等量關(guān)系是解決問題的關(guān)鍵.22、(1)(2)﹣1<x<0或x>1.(3)四邊形OABC是平行四邊形;理由見解析.【解析】

(1)設(shè)反比例函數(shù)的解析式為(k>0),然后根據(jù)條件求出A點坐標,再求出k的值,進而求出反比例函數(shù)的解析式.(2)直接由圖象得出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;(3)首先求出OA的長度,結(jié)合題意CB∥OA且CB=,判斷出四邊形OABC是平行四邊形,再證明OA=OC【詳解】解:(1)設(shè)反比例函數(shù)的解析式為(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1.∴A(﹣1,﹣2).又∵點A在上,∴,解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論