版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.到三角形三個頂點的距離相等的點是三角形()的交點.A.三個內(nèi)角平分線 B.三邊垂直平分線C.三條中線 D.三條高2.如圖,圓弧形拱橋的跨徑米,拱高米,則拱橋的半徑為()米A. B. C. D.3.已知點A(0,﹣4),B(8,0)和C(a,﹣a),若過點C的圓的圓心是線段AB的中點,則這個圓的半徑的最小值是()A. B. C. D.24.在平面直角坐標系xOy中,二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖所示,則下列結(jié)論正確的是()A.a(chǎn)<0,b<0,c>0B.﹣=1C.a(chǎn)+b+c<0D.關于x的方程ax2+bx+c=﹣1有兩個不相等的實數(shù)根5.如圖是拋物線y=ax2+bx+c(a≠0)的圖象的一部分,拋物線的頂點坐標是A(1,4),與x軸的一個交點是B(3,0),下列結(jié)論:①abc>0;②2a+b=0;③方程ax2+bx+c=4有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(﹣2.0);⑤x(ax+b)≤a+b,其中正確結(jié)論的個數(shù)是()A.4個 B.3個 C.2個 D.1個6.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.等邊三角形 B.菱形 C.平行四邊形 D.正五邊形7.為了解中學300名男生的身高情況,隨機抽取若干名男生進行身高測量,將所得數(shù)據(jù)整理后,畫出頻數(shù)分布直方圖(如圖).估計該校男生的身高在169.5cm~174.5cm之間的人數(shù)有()A.12 B.48 C.72 D.968.若點A(2,),B(-3,),C(-1,)三點在拋物線的圖象上,則、、的大小關系是()A.B.C.D.9.小明和小亮按如圖所示的規(guī)則玩一次“錘子、剪刀、布”游戲,下列說法中正確的是()A.小明不是勝就是輸,所以小明勝的概率為 B.小明勝的概率是,所以輸?shù)母怕适荂.兩人出相同手勢的概率為 D.小明勝的概率和小亮勝的概率一樣10.若關于的一元二次方程的一個根是0,則的值是()A.1 B.-1 C.1或-1 D.11.“五一”期間,某市共接待海內(nèi)外游客約567000人次,將567000用科學記數(shù)法表示為()A.567×103B.56.7×104C.5.67×105D.0.567×10612.共享單車為市民出行帶來了方便,某單車公司第一個月投放1000輛單車,計劃第三個月投放單車數(shù)量比第一個月多440輛.設該公司第二、三兩個月投放單車數(shù)量的月平均增長率為x,則所列方程正確的為()A.1000(1+x)2=1000+440 B.1000(1+x)2=440C.440(1+x)2=1000 D.1000(1+2x)=1000+440二、填空題:(本大題共6個小題,每小題4分,共24分.)13.科技改變生活,手機導航極大方便了人們的出行.如圖,小明一家自駕到古鎮(zhèn)C游玩,到達A地后,導航顯示車輛應沿北偏西60°方向行駛6千米至B地,再沿北偏東45°方向行駛一段距離到達古鎮(zhèn)C.小明發(fā)現(xiàn)古鎮(zhèn)C恰好在A地的正北方向,則B、C兩地的距離是_____千米.14.如圖,在5×5的正方形(每個小正方形的邊長為1)網(wǎng)格中,格點上有A、B、C、D、E五個點,如果要求連接兩個點之后線段的長度大于3且小于4,則可以連接_____.(寫出一個答案即可)15.方程x-1=的解為:______.16.如圖,有一個橫截面邊緣為拋物線的水泥門洞,門洞內(nèi)的地面寬度為,兩側(cè)離地面高處各有一盞燈,兩燈間的水平距離為,則這個門洞的高度為_______.(精確到)17.如圖,點A在雙曲線上,AB⊥x軸于B,且△AOB的面積S△AOB=2,則k=______.18.小李和小林練習射箭,射完10箭后兩人的成績?nèi)鐖D所示,通常新手的成績不太穩(wěn)定,根據(jù)圖中的信息,估計這兩人中的新手是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知關于x的方程(a﹣1)x2+2x+a﹣1=1.若該方程有一根為2,求a的值及方程的另一根;當a為何值時,方程的根僅有唯一的值?求出此時a的值及方程的根.20.(6分)某種蔬菜的銷售單價y1與銷售月份x之間的關系如圖(1)所示,成本y2與銷售月份之間的關系如圖(2)所示(圖(1)的圖象是線段圖(2)的圖象是拋物線)分別求出y1、y2的函數(shù)關系式(不寫自變量取值范圍);通過計算說明:哪個月出售這種蔬菜,每千克的收益最大?21.(6分)如圖,在△ABC中,∠B=90°,AB=4,BC=1.在BC上求作一點P,使PA+PB=BC;(尺規(guī)作圖,不寫作法,保留作圖痕跡)求BP的長.22.(8分)閱讀下列材料:題目:如圖,在△ABC中,已知∠A(∠A<45°),∠C=90°,AB=1,請用sinA、cosA表示sin2A.23.(8分)某工廠計劃生產(chǎn),兩種產(chǎn)品共10件,其生產(chǎn)成本和利潤如下表.種產(chǎn)品種產(chǎn)品成本(萬元件)25利潤(萬元件)13(1)若工廠計劃獲利14萬元,問,兩種產(chǎn)品應分別生產(chǎn)多少件?(2)若工廠計劃投入資金不多于44萬元,且獲利多于22萬元,問工廠有哪幾種生產(chǎn)方案?24.(10分)如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點P,OF∥BC交AC于AC點E,交PC于點F,連接AF.判斷AF與⊙O的位置關系并說明理由;若⊙O的半徑為4,AF=3,求AC的長.25.(10分)(1)計算:﹣4sin31°+(2115﹣π)1﹣(﹣3)2(2)先化簡,再求值:1﹣,其中x、y滿足|x﹣2|+(2x﹣y﹣3)2=1.26.(12分)現(xiàn)有一次函數(shù)y=mx+n和二次函數(shù)y=mx2+nx+1,其中m≠0,若二次函數(shù)y=mx2+nx+1經(jīng)過點(2,0),(3,1),試分別求出兩個函數(shù)的解析式.若一次函數(shù)y=mx+n經(jīng)過點(2,0),且圖象經(jīng)過第一、三象限.二次函數(shù)y=mx2+nx+1經(jīng)過點(a,y1)和(a+1,y2),且y1>y2,請求出a的取值范圍.若二次函數(shù)y=mx2+nx+1的頂點坐標為A(h,k)(h≠0),同時二次函數(shù)y=x2+x+1也經(jīng)過A點,已知﹣1<h<1,請求出m的取值范圍.27.(12分)如圖,∠BAO=90°,AB=8,動點P在射線AO上,以PA為半徑的半圓P交射線AO于另一點C,CD∥BP交半圓P于另一點D,BE∥AO交射線PD于點E,EF⊥AO于點F,連接BD,設AP=m.(1)求證:∠BDP=90°.(2)若m=4,求BE的長.(3)在點P的整個運動過程中.①當AF=3CF時,求出所有符合條件的m的值.②當tan∠DBE=時,直接寫出△CDP與△BDP面積比.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題分析:根據(jù)線段垂直平分線上的點到兩端點的距離相等解答.解:到三角形三個頂點的距離相等的點是三角形三邊垂直平分線的交點.故選B.點評:本題考查了線段垂直平分線上的點到兩端點的距離相等的性質(zhì),熟記性質(zhì)是解題的關鍵.2、A【解析】試題分析:根據(jù)垂徑定理的推論,知此圓的圓心在CD所在的直線上,設圓心是O.連接OA.根據(jù)垂徑定理和勾股定理求解.得AD=6設圓的半徑是r,根據(jù)勾股定理,得r2=36+(r﹣4)2,解得r=6.5考點:垂徑定理的應用.3、B【解析】
首先求得AB的中點D的坐標,然后求得經(jīng)過點D且垂直于直線y=-x的直線的解析式,然后求得與y=-x的交點坐標,再求得交點與D之間的距離即可.【詳解】AB的中點D的坐標是(4,-2),∵C(a,-a)在一次函數(shù)y=-x上,∴設過D且與直線y=-x垂直的直線的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,則函數(shù)解析式是y=x-1.根據(jù)題意得:,解得:,則交點的坐標是(3,-3).則這個圓的半徑的最小值是:=.
故選:B【點睛】本題考查了待定系數(shù)法求函數(shù)的解析式,以及兩直線垂直的條件,正確理解C(a,-a),一定在直線y=-x上,是關鍵.4、D【解析】試題分析:根據(jù)圖像可得:a<0,b>0,c<0,則A錯誤;,則B錯誤;當x=1時,y=0,即a+b+c=0,則C錯誤;當y=-1時有兩個交點,即有兩個不相等的實數(shù)根,則正確,故選D.5、B【解析】
通過圖象得到、、符號和拋物線對稱軸,將方程轉(zhuǎn)化為函數(shù)圖象交點問題,利用拋物線頂點證明.【詳解】由圖象可知,拋物線開口向下,則,,拋物線的頂點坐標是,拋物線對稱軸為直線,,,則①錯誤,②正確;方程的解,可以看做直線與拋物線的交點的橫坐標,由圖象可知,直線經(jīng)過拋物線頂點,則直線與拋物線有且只有一個交點,則方程有兩個相等的實數(shù)根,③正確;由拋物線對稱性,拋物線與軸的另一個交點是,則④錯誤;不等式可以化為,拋物線頂點為,當時,,故⑤正確.故選:.【點睛】本題是二次函數(shù)綜合題,考查了二次函數(shù)的各項系數(shù)與圖象位置的關系、拋物線對稱性和最值,以及用函數(shù)的觀點解決方程或不等式.6、B【解析】
在平面內(nèi),如果一個圖形沿一條直線對折,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內(nèi)一個圖形繞某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)前后的圖形能互相重合,那么這個圖形叫做中心對稱圖形,分別判斷各選項即可解答.【詳解】解:A、等邊三角形是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、菱形是軸對稱圖形,也是中心對稱圖形,故此選項正確;C、平行四邊形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;D、正五邊形是軸對稱圖形,不是中心對稱圖形,故此選項錯誤.故選:B.【點睛】本題考查了軸對稱圖形和中心對稱圖形的定義,熟練掌握是解題的關鍵.7、C【解析】
解:根據(jù)圖形,身高在169.5cm~174.5cm之間的人數(shù)的百分比為:,∴該校男生的身高在169.5cm~174.5cm之間的人數(shù)有300×24%=72(人).故選C.8、C【解析】首先求出二次函數(shù)的圖象的對稱軸x==2,且由a=1>0,可知其開口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在對稱軸的左側(cè),而在對稱軸的左側(cè),y隨x得增大而減小,所以.總結(jié)可得.故選C.點睛:此題主要考查了二次函數(shù)的圖像與性質(zhì),解答此題的關鍵是(1)找到二次函數(shù)的對稱軸;(2)掌握二次函數(shù)的圖象性質(zhì).9、D【解析】
利用概率公式,一一判斷即可解決問題.【詳解】A、錯誤.小明還有可能是平;B、錯誤、小明勝的概率是
,所以輸?shù)母怕适且彩?;C、錯誤.兩人出相同手勢的概率為;D、正確.小明勝的概率和小亮勝的概率一樣,概率都是;故選D.【點睛】本題考查列表法、樹狀圖等知識.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.10、B【解析】
根據(jù)一元二次方程的解的定義把x=0代入方程得到關于a的一元二次方程,然后解此方程即可【詳解】把x=0代入方程得,解得a=±1.∵原方程是一元二次方程,所以
,所以,故故答案為B【點睛】本題考查了一元二次方程的解的定義:使一元二次方程左右兩邊成立的未知數(shù)的值叫一元二次方程的解.11、C【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值≥1時,n是非負數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】567000=5.67×105,【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.12、A【解析】
根據(jù)題意可以列出相應的一元二次方程,從而可以解答本題.【詳解】解:由題意可得,1000(1+x)2=1000+440,故選:A.【點睛】此題主要考查一元二次方程的應用,解題的關鍵是根據(jù)題意找到等量關系進行列方程.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3【解析】
作BE⊥AC于E,根據(jù)正弦的定義求出BE,再根據(jù)正弦的定義計算即可.【詳解】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=,∴BE=AB?sin∠BAC=,由題意得,∠C=45°,∴BC==(千米),故答案為3.【點睛】本題考查的是解直角三角形的應用-方向角問題,掌握方向角的概念、熟記銳角三角函數(shù)的定義是解題的關鍵.14、答案不唯一,如:AD【解析】
根據(jù)勾股定理求出,根據(jù)無理數(shù)的估算方法解答即可.【詳解】由勾股定理得:,.故答案為答案不唯一,如:AD.【點睛】本題考查了無理數(shù)的估算和勾股定理,如果直角三角形的兩條直角邊長分別是,,斜邊長為,那么.15、【解析】
兩邊平方解答即可.【詳解】原方程可化為:(x-1)2=1-x,
解得:x1=0,x2=1,
經(jīng)檢驗,x=0不是原方程的解,x=1是原方程的解
故答案為.【點睛】此題考查無理方程的解法,關鍵是把兩邊平方解答,要注意解答后一定要檢驗.16、9.1【解析】
建立直角坐標系,得到二次函數(shù),門洞高度即為二次函數(shù)的頂點的縱坐標【詳解】如圖,以地面為x軸,門洞中點為O點,畫出y軸,建立直角坐標系由題意可知各點坐標為A(-4,0)B(4,0)D(-3,4)設拋物線解析式為y=ax2+c(a≠0)把B、D兩點帶入解析式可得解析式為,則C(0,)所以門洞高度為m≈9.1m【點睛】本題考查二次函數(shù)的簡單應用,能夠建立直角坐標系解出二次函數(shù)解析式是本題關鍵17、-4【解析】:由反比例函數(shù)解析式可知:系數(shù),∵S△AOB=2即,∴;又由雙曲線在二、四象限k<0,∴k=-418、小李.【解析】
解:根據(jù)圖中的信息找出波動性大的即可:根據(jù)圖中的信息可知,小李的成績波動性大,則這兩人中的新手是小李.故答案為:小李.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(3)a=,方程的另一根為;(2)答案見解析.【解析】
(3)把x=2代入方程,求出a的值,再把a代入原方程,進一步解方程即可;(2)分兩種情況探討:①當a=3時,為一元一次方程;②當a≠3時,利用b2-4ac=3求出a的值,再代入解方程即可.【詳解】(3)將x=2代入方程,得,解得:a=.將a=代入原方程得,解得:x3=,x2=2.∴a=,方程的另一根為;(2)①當a=3時,方程為2x=3,解得:x=3.②當a≠3時,由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.當a=2時,原方程為:x2+2x+3=3,解得:x3=x2=-3;當a=3時,原方程為:-x2+2x-3=3,解得:x3=x2=3.綜上所述,當a=3,3,2時,方程僅有一個根,分別為3,3,-3.考點:3.一元二次方程根的判別式;2.解一元二次方程;3.分類思想的應用.20、(1)y1=;y2=x2﹣4x+2;(2)5月出售每千克收益最大,最大為.【解析】
(1)觀察圖象找出點的坐標,利用待定系數(shù)法即可求出y1和y2的解析式;(2)由收益W=y1-y2列出W與x的函數(shù)關系式,利用配方求出二次函數(shù)的最大值.【詳解】解:(1)設y1=kx+b,將(3,5)和(6,3)代入得,,解得.∴y1=﹣x+1.設y2=a(x﹣6)2+1,把(3,4)代入得,4=a(3﹣6)2+1,解得a=.∴y2=(x﹣6)2+1,即y2=x2﹣4x+2.(2)收益W=y(tǒng)1﹣y2,=﹣x+1﹣(x2﹣4x+2)=﹣(x﹣5)2+,∵a=﹣<0,∴當x=5時,W最大值=.故5月出售每千克收益最大,最大為元.【點睛】本題考查了一次函數(shù)和二次函數(shù)的應用,熟練掌握待定系數(shù)法求解析式是解題關鍵,掌握配方法是求二次函數(shù)最大值常用的方法21、(1)見解析;(2)2.【解析】
(1)作AC的垂直平分線與BC相交于P;(2)根據(jù)勾股定理求解.【詳解】(1)如圖所示,點P即為所求.(2)設BP=x,則CP=1﹣x,由(1)中作圖知AP=CP=1﹣x,在Rt△ABP中,由AB2+BP2=AP2可得42+x2=(1﹣x)2,解得:x=2,所以BP=2.【點睛】考核知識點:勾股定理和線段垂直平分線.22、sin2A=2cosAsinA【解析】
先作出直角三角形的斜邊的中線,進而求出,∠CED=2∠A,最后用三角函數(shù)的定義即可得出結(jié)論【詳解】解:如圖,作Rt△ABC的斜邊AB上的中線CE,則∴∠CED=2∠A,過點C作CD⊥AB于D,在Rt△ACD中,CD=ACsinA,在Rt△ABC中,AC=ABcosA=cosA在Rt△CED中,sin2A=sin∠CED==2ACsinA=2cosAsinA【點睛】此題主要解直角三角形,銳角三角函數(shù)的定義,直角三角形的斜邊的中線等于斜邊的一半,構造出直角三角形和∠CED=2∠A是解本題的關鍵.23、(1)生產(chǎn)產(chǎn)品8件,生產(chǎn)產(chǎn)品2件;(2)有兩種方案:方案①,種產(chǎn)品2件,則種產(chǎn)品8件;方案②,種產(chǎn)品3件,則種產(chǎn)品7件.【解析】
(1)設生產(chǎn)種產(chǎn)品件,則生產(chǎn)種產(chǎn)品件,根據(jù)“工廠計劃獲利14萬元”列出方程即可得出結(jié)論;(2)設生產(chǎn)產(chǎn)品件,則生產(chǎn)產(chǎn)品件,根據(jù)題意,列出一元一次不等式組,求出y的取值范圍,即可求出方案.【詳解】解:(1)設生產(chǎn)種產(chǎn)品件,則生產(chǎn)種產(chǎn)品件,依題意得:,解得:,則,答:生產(chǎn)產(chǎn)品8件,生產(chǎn)產(chǎn)品2件;(2)設生產(chǎn)產(chǎn)品件,則生產(chǎn)產(chǎn)品件,解得:.因為為正整數(shù),故或3;答:共有兩種方案:方案①,種產(chǎn)品2件,則種產(chǎn)品8件;方案②,種產(chǎn)品3件,則種產(chǎn)品7件.【點睛】此題考查的是一元一次方程的應用和一元一次不等式組的應用,掌握實際問題中的等量關系和不等關系是解決此題的關鍵.24、解:(1)AF與圓O的相切.理由為:如圖,連接OC,∵PC為圓O切線,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF為圓O的切線,即AF與⊙O的位置關系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E為AC中點,即AE=CE=AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根據(jù)勾股定理得:OF=1.∵S△AOF=?OA?AF=?OF?AE,∴AE=.∴AC=2AE=.【解析】試題分析:(1)連接OC,先證出∠3=∠2,由SAS證明△OAF≌△OCF,得對應角相等∠OAF=∠OCF,再根據(jù)切線的性質(zhì)得出∠OCF=90°,證出∠OAF=90°,即可得出結(jié)論;(2)先由勾股定理求出OF,再由三角形的面積求出AE,根據(jù)垂徑定理得出AC=2AE.試題解析:(1)連接OC,如圖所示:∵AB是⊙O直徑,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切線,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切線;(2)∵⊙O的半徑為4,AF=3,∠OAF=90°,∴OF==1∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面積=AF?OA=OF?AE,∴3×4=1×AE,解得:AE=,∴AC=2AE=.考點:1.切線的判定與性質(zhì);2.勾股定理;3.相似三角形的判定與性質(zhì).25、(1)-7;(2),.【解析】
(1)原式第一項利用算術平方根定義計算,第二項利用特殊角的三角函數(shù)值計算,第三項利用零指數(shù)冪法則計算,最后一項利用乘方的意義化簡,計算即可得到結(jié)果;
(2)原式第二項利用除法法則變形,約分后兩項通分并利用同分母分式的減法法則計算,約分得到最簡結(jié)果,利用非負數(shù)的性質(zhì)求出x與y的值,代入計算即可求出值.【詳解】(1)原式=3?4×+1?9=?7;(2)原式=1?=1?==?;∵|x?2|+(2x?y?3)2=1,∴,解得:x=2,y=1,當x=2,y=1時,原式=?.故答案為(1)-7;(2)?;?.【點睛】本題考查了實數(shù)的運算、非負數(shù)的性質(zhì)與分式的化簡求值,解題的關鍵是熟練的掌握實數(shù)的運算、非負數(shù)的性質(zhì)與分式的化簡求值的運用.26、(1)y=x﹣2,y=x2++1;(2)a<;(3)m<﹣2或m>1.【解析】
(1)直接將點代入函數(shù)解析式,用待定系數(shù)法即可求解函數(shù)解析式;(2)點(2,1)代入一次函數(shù)解析式,得到n=?2m,利用m與n的關系能求出二次函數(shù)對稱軸x=1,由一次函數(shù)經(jīng)過一、三象限可得m>1,確定二次函數(shù)開口向上,此時當y1>y2,只需讓a到對稱軸的距離比a+1到對稱軸的距離大即可求a的范圍.(3)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 5267.5-2024緊固件表面處理第5部分:熱擴散滲鋅層
- 標準最高額抵押借款合同模板
- 旅行社常用旅游意外保險合同樣本
- 2024年工程項目合作協(xié)議
- 2024版營運客車購銷合同樣本
- 2024二手車買賣協(xié)議書樣本
- 2024年全新國際貿(mào)易合同模板1-
- 2024電力工程委托運行協(xié)議
- 個人車輛抵押合同范本2024年
- 2024年同居協(xié)議書范文
- 小學五年級上學期信息科技《我們?nèi)ツ膬骸方虒W課件
- 2024智能變電站新一代集控站設備監(jiān)控系統(tǒng)技術規(guī)范部分
- 河北省邯鄲市思想政治高一上學期2024-2025學年測試試題及答案解析
- 2004年三中會議精神測試題及答案
- 2024年浙江省應急管理行政執(zhí)法競賽題庫-上(單選、多選題)
- 【2013浙G32】機械連接竹節(jié)樁圖集
- 安全生產(chǎn)法律法規(guī)清單2024.07
- 人教版高中化學選擇性必修1第2章化學反應速率與化學平衡測試含答案
- 《食品添加劑應用技術》第二版 課件 任務3.1 防腐劑的使用
- 2024年國家能源投資集團有限責任公司校園招聘考試試題及參考答案
- 糖皮質(zhì)激素的合理應用課件
評論
0/150
提交評論