建筑外文文獻及翻譯_第1頁
建筑外文文獻及翻譯_第2頁
建筑外文文獻及翻譯_第3頁
建筑外文文獻及翻譯_第4頁
建筑外文文獻及翻譯_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

WORDWORD版本.外文原文StudyonHumanResourceAllocationinMulti-ProjectonthePriorityandtheCostofProjectsLinJingjing,ZhouGuohuaSchoolofEconomics and management, Southwest Jiao University,610031,ChinaAbstract----Thispaperputforwardtheaffectingfactorsofproject’spriority.whichisintroducedintoamulti-objectiveoptimizationmodelforhumanresourceallocationinmulti-projectenvironment.Theobjectivesofthemodelweretheminimumcostlossduetothedelayofthetimelimitoftheprojectsandtheminimumdelayoftheprojectwiththehighestpriority.ThenaGeneticAlgorithmtosolvethemodelwasintroduced.Finally,anumericalexamplewasusedtotestifythefeasibilityofthemodelandthealgorithm.Index Terms—Genetic Algorithm, Human Resource Multi-project’sproject’spriority.INTRODUCTIONMoreandmoreenterprisesarefacingthechallengeofmanagement,whichhasbeenthefocusamongresearcheson projectmanagement.Inmulti-projectenvironment,thesharearecompetitionofresourcessuchascapital,timeandhumanresourcesoftenoccur.Therefore,it’scriticaltoscheduleprojectsinordertosatisfythedifferentresourcedemandsandtoshortenthedurationtimewithresourcesconstrained,asin[1].Formanyenterprises,thehumanresourcesarethemostpreciousasset.Soenterprisesshouldreasonablyandeffectivelyallocateeachresource,especiallythehumanresource,inordertoshortenthetimeandofprojectsandtoincreasethebenefits.Someliteratureshavediscussedtheresourceallocationprobleminmulti-projectenvironmentwithresourcesconstrained.Reference[1]designedaniterativealgorithmandproposedamathematicalmodeloftheresource-constrainedmulti-projectscheduling.Basedonworkbreakdownstructure(WBS)andDantzig-Wolfedecompositionmethod,afeasiblemulti-projectplanningmethodwasillustrated,asin[2]References[3,4]discussedtheresource-constrainedprojectschedulingbasedonBranchDelimitationmethod.Reference[5]putforwardtheframeworkofhumanresourceallocationinmulti-projectinLong-term,medium-termandshort-termaswellasresearchanddevelopment(R&D)environment.BasedonGPSSlanguage,simulationmodelofresourcesallocationwasbuilttogettheproject’sdurationtimeandresourcesdistribution,asin[6].Reference[7]solvedengineeringproject’sresourcesoptimizationproblemusingGeneticAlgorithms.Theseliteraturesreasonablyoptimizedresourcesallocationinmulti-project,butallhadthesameprerequisitethattheproject’simportanceisthesametoeachother.Thispaperanalyzetheeffectsofproject’spriorityonhumanresourceallocation,whichistobeintroducedintoamathematicalmodel;finally,aGeneticAlgorithmisusedtosolvethemodel.EFFECTSOFPROJECTSPRIORITYONHUMANRESOUCEALLOCATIONANDAFFECTINGFACTORSOFPROJECT’SPRIORITYResourcesharingisoneofthemaincharacteristicsofmanagement.Theallocationofsharedresourcesrelatestotheefficiencyandrationalityoftheuseofresources.Whenresourceconflictoccurs,theresourcedemandoftheprojectwithhighestpriorityshouldbesatisfiedfirst.Onlyafterthat,cantheprojectswithlowerprioritybeconsidered.Basedontheideaofprojectclassificationmanagement,thispaperclassifiestheaffectingfactorsofproject’spriorityintocategories,astheproject’sbenefits,thecomplexityofprojectmanagementandtechnology,andthestrategicinfluenceontheenterprise’sfuturedevelopment.Thepriorityweightoftheprojectisthefunctionoftheabovethreecategories,asshownin(1).W=f(I,c,s…) (1)Wherewreferstoproject’spriorityweight;Ireferstothebenefitsoftheproject;creferstothecomplexityoftheproject,includingthetechnologyandmanagement;sreferstotheinfluenceoftheprojectonenterprise.Thebiggerthevaluesofthethreecategories,thehigherthepriorityis.HUMANRESOURCEALLOCATIONMODELINMULTI-PROJECTENVIRONMENTProblemDescriptionAccordingtotheconstrainttheory,theenterpriseshouldstrictlydifferentiatethebottleneckresourcesandthenon-bottleneckresourcestosolvetheconstraintproblemofbottleneckresources.Thispaperwillstressonthelimitedcriticalresourcesbeingallocatedtomulti-projectwithdefinitedurationtimesandpriority.Tosimplifytheproblem,wesupposethatthatthreeexistseveralparallelprojectsandasharedresourcesstorehouse,andtheenterprise’soperationonlyinvolvesonekindofcriticalresources.Thesupplyofthecriticalhumanresourceiswhichcannotbeobtainedbyhiringoranyotherwaysduringacertainperiod.whenresourceconflictamongparallelprojectsoccurs,wemayallocatethehumanresourcetomulti-projectaccording to project’s priorities .The allocation ofnon-criticalindependenthumanresourcesisnotconsideredinthispaper,whichsupposesthattheindependentresourcesthateachprojectneedscanbesatisfied.Engineeringprojectsusuallyneedmassivecriticalskilledhumanresourcesinsomecriticalchain,whichcannotbesubstitutedtheotherkindofhumanresources.Whenthecriticalchainsofprojectsatthesametimeduringsomeperiod,thereoccurresourceconflictandcompetition.Thepaperalsosupposesthatthecorrespondingnetworkplanningofvariousprojectshavealreadybeenestablished,andthepeaksofeachproject’sresourcesdemandhavebeenoptimized.Thedelayofthecriticalchainaffectthewholeproject’sdurationtime.ModelHypothesesThefollowinghypotheseshelpustoestablishamathematicalmodel:Thenumberofmutuallyindependentprojectsinvolvedinresourceallocationprobleminmulti-projectisN.projectisindicatedwithQ,whilei=1,2,…N.iThe priority weights of multi-project have beendetermined,whicharerespectivelyw,w…w.1 2 nThetotalnumberofthecriticalhumanresourcesisR,withrstandingforeachperson,whilek=1,2,…,Rk1humanresourcertoprojectQ(4)Δk= k ii 0othersResourcescapturingbyseveralprojectsbeginsontime.tEisitheexpecteddurationtimeofprojectIthatneedsthecriticalresourcestofinishsometaskaftertimet,onthepremisethatthehumanresourcesdemandcanbesatisfied.tAiistherealdurationtimeofprojectIthatneedsthecriticalresourcetofinishsometaskaftertimet.Accordingtothecontract,ifthedelayoftheprojecthappensthedailycostlossduetothedelayis△cforprojectiI.Accordingtotheproject’simportance,thedelayofaprojectwillnotonlycausethecostloss,butwillalsodamagetheprestigeandstatusoftheenterprise.(whilethecostisdifficulttoquantify,itisn’tconsideredinthisarticletemporarily.)Fromthehypothesis(5),wecanknowthataftertimettime-gapbetweentherealandexpecteddurationtimeofprojectIthatneedsthecriticalresourcestofinishsometaskis△t,(△t=tA-tE ).Forthereexists resourcesi i i icompetition,thetime–gapisnecessarilyapositivenumber.(8)Accordingtohypotheses(6)and(7),thetotalcostlossprojectIisC (C=△t*△C).i i i i(9)Thedurationtimeofactivitiescanbeexpressedbytheworkloadofactivitiesdividedbythequantityofresources,whichcanbeindicatedwithfollowingexpressionof tA=η/R* ,.Intheexpression,ηreferstotheworkloadi i i iofprojectsIduringsomeperiod,whichissupposedtobefixedandpre-determinedbytheprojectmanagersonprojectplanningphase;R*referstothenumberofthecriticalhumanresourcesibeingallocatedtoprojectsIactually,withtheequationRi=Rk1

existing.DuetotheresourcecompetitionthekiresourcedemandsofprojectswithhigherPrioritiesmaybeguarantee,whilethoseprojectswithprioritiesmaynotbefullyguaranteed.Inthissituation,thedecreaseoftheresourcesupplywillleadtotheincreasethedurationtimeofactivitiesandtheproject,whiletheworkloadisfixed.OptimizationModelBasedontheabovehypotheses,theresourceallocationmodelinmulti-projectenvironmentcanbeestablished.Here,theoptimizationmodelis:F=minZ=minN i i

Cii=minNi1

i1N

i1tci i i

(2)=minN

N

i tE ci R i ii1

i1

kii1 F =minZ=mint2 2

=min i tE (3)R ikikii1Wherewj=max(wi),(i,jN) (4)Subject to:0N

=R (5)kii1 kThemodelisamulti-objectiveone.Thetwoobjectivefunctionsarerespectivelytominimizethetotalcostloss,whichisconformtotheeconomictarget,andtoshortenthetimeoftheprojectwithhighestpriority.Thefirstobjectivefunction can only optimize the apparent economiccost;thereforethesecondobjectivefunctionwillhelptomakeupthislimitation.Fortheprojectwithhighestpriority,timedelaywilldamagenotonlytheeconomicbenefits,butalsothestrategyandtheprestigeoftheenterprise.Thereforeweshouldguaranteethatthemostimportantprojectbefinishedontimeoraheadofschedule.SOLUTIONTOTHEMULTI-OBJECTIVEMODELUSINGGENETICALGORITHMThe multi-objective optimization problem is quitecommon.Generally,eachobjectiveshouldbeoptimizedinordertogetthecomprehensiveobjectiveoptimized.Thereforetheweightofeachsub-objectiveshouldbeconsidered.Reference[8]proposedanimprovedantcolonyalgorithmtosolvethisproblem.Supposedthattheweightsofthetwooptimizingobjectivesareα andβ,whereα+β=1.ThenthecomprehensivegoalisF* ,whereF*=αF1+βF2.ThePrincipleofGeneticAlgorithmGeneticAlgorithmrootsfromtheconceptsofnaturalselectionandgenetics.It’sarandomsearchtechniqueforglobaloptimizationinacomplexsearchspace.Becauseoftheparallelnatureandlessrestrictions,ithasthekeyfeaturesofgreatcurrency,fastconvergenceandeasycalculation.Meanwhile,itssearchscopenotlimited,soit’saneffectivemethodtosolvetheresourcebalancingproblem,asin[9].ThemainstepsofGAinthispaperareasfollow:EncodingAnintegerstringisshort,directandefficient.Accordingtothecharacteristicsofthemodel,thehumanresourcecanbeassignedtobeacodeobject.Thestringlengthequalstothetotalnumberofhumanresourcesallocated.ChoosingthefitnessfunctionThispaperchoosetheobjectivefunctionasthefoundationoffitnessfunction.Toratethevaluesoftheobjectivenfunction,thefitnessofthen-thindividualis1/ 。nGeneticoperationIt’sthecoreofGA.Thisprocessincludesthreebasicoperators:selectionoperator,crossoveroperator,andmutationoperation.Selectionoperationistoselectthegoodindividualsamongthegroup.Theprobabilityofastringtobeselectedaparentisproportionaltoitsfitness.Thehigherthestring’sfitnessis,thegreatertheprobabilityofstringtobeselectedasaparentwillbe.CrossoveroperatorTheso-calledcrossoveristhatthepatenchromosomesexchangesomegenes toyieldtwooffspringstringsinrule.Wecanuseuniformcrossover,thatthetwochromosomesexchangethegenesonthesamepositionswiththesamecrossoverprobabilitytoyieldtwonewindividuals.MutationoperatorMutationaddstothediversityofapopulationandtherebyincreasesthelikelihoodthatthealgorithmwillindividualswithbetterfitnessvalues.ThemutationoperatordeterminesthesearchabilityofGA,maintainthediversityofapopulation,andavoidtheprematurity.Thereareseveralmutationisquiteeasy.StandardfortheterminalofGAWithouthumancontrol,theevolutionprocessofthealgorithmwillneverend.Thepopulationsizeaffectsfinalresultandtheoperationspeed.Ifthesizeisgreater,thediversityofthepopulationcanbeadded,andthebestresultcanbeobtainedeasier.However,theefficiencyisreduced.Recently,inmostGAprogress,thebiggestevolvementalgebraisdeterminedbytocontrolthecoursethealgorithm.NUMERICALEXAMPLEWeuseanumericalexampletoillustratetheeffectivenessofGeneticAlgorithm.Assumethat therearethreeprojectsthesamenetwork,andthepriorityweightshavebeenputforward.Thereisonlyonecriticalpathineachproject.datawehaveknownareshowninTable1.ProjePriorityProjePrioritytECostloss(humanWorkloadctweightwyuan/day)(person*day)10.421010010020.3181508030.271280120ThestepsofGeneticAlgorithmtosolvethemodelareasfollow:Step1: Anintegerstringisadopted.Encodewith[0,1,2]forarethreeprojects.Thelengthofthechromosomeis16,thetotalnumberofhumanresourcetobeallocated.Step2:Theinitialpopulationsizeis50.Step3:Doinggeneticoperation.AdoptRouletteWheelandElitisttactictodeterminedselectionoperator.Theoffspringcanbebyuniformcross-over.Themutationoperatorcanbedeterminedbyuniformmutation.Weassumethatthemutationprobabilityequalto0.001.Step4:Adoptthemaximumpopulationsizeis100whenterminated.Afterthecomputersimulation,wecanobtainthePare-toresultswithdifferentimportanceweightsofthetwoobjectivefunctions,asinTable2:Table2TheSolutionResultoftheModelR*1R*2R*3F1(HundredYuan)F2(Day)α=1,β=0655911.22.8α=0.7,β=0.3754940.81.8α=0.4,β=0.68441051.81.05α=0.1,β=0.910331472.80Fromtable2wecanlearnthat,andβchange,theresultdifferent.HoweverwecanobtainaseriesofParetoresults.CONCLUSIONHumanresourceallocationinmulti-projectenvironmentiscomplicatedproblem.Thispaperanalyzestheimportanceofproject’spriorityinresourceallocationandestablishesahumanresourceallocationmodelbasedonpriorityandcostofprojects.Finally,geneticAlgorithmisadoptedtosolvethemodel.Duringtheconstructionprocessoftheallocationmodel,wehaveforwardsomehypothesesinordertosimplifytheproblem.However,whentheenterprisespracticallyallocatetheresources,heywillfacemorecomplexity,whichisthefocusofourfuturestudy.中文翻譯:在項目優(yōu)先權和成本的基礎上對多項目中人力資源配置的研究林晶晶,周中國西南交通大學經(jīng)濟和管理學院,610031摘要---本文提出項目優(yōu)先次序的影響因素,為多項目環(huán)境配置人力資源引后,用一個數(shù)值例子證明該模型和算法的可行性。關鍵字---遺傳算法;人力資源配置;多項目、項目的優(yōu)先權;1、引言越來越多的企業(yè)面臨的挑戰(zhàn)是多項目管理,這已經(jīng)成為項目管理研究的焦尤其是人力資源,用以縮短時間減少項目的成本和增加效益。迭代算法,并提出了資源約束的多項目調度的數(shù)學模型?;诠ぷ鞣纸饨Y構(wbs)dantzig-wolf期的多項目及研究和開發(fā)(R&D)gpss解這一模型。項目優(yōu)先權對人的資源分配的作用和影響項目優(yōu)先權的因素在此之后,較低優(yōu)先權的項目才予以考慮?;陧椖糠诸惞芾淼乃枷?,本文將歸類項目的優(yōu)先次序的影響因素分為三發(fā)展。優(yōu)先權的重量級取決于該項目上述三大類因素。公式為:W=f(I,c,s…)(1)wics、在多項目環(huán)境下的人力資源分配模型。、問題描述項目都有明確的期限和時代優(yōu)先權。人力資源的配置問題,這是假定這些獨立的資源可以滿足每個項目的需求。環(huán)節(jié)的延誤將會影響整個項目的持續(xù)時間。模

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論