版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數.設,若對任意不相等的正數,,恒有,則實數a的取值范圍是()A. B.C. D.2.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,23.定義運算,則函數的圖象是().A. B.C. D.4.已知排球發(fā)球考試規(guī)則:每位考生最多可發(fā)球三次,若發(fā)球成功,則停止發(fā)球,否則一直發(fā)到次結束為止.某考生一次發(fā)球成功的概率為,發(fā)球次數為,若的數學期望,則的取值范圍為()A. B. C. D.5.函數的圖象大致是()A. B.C. D.6.已知是虛數單位,則復數()A. B. C.2 D.7.設、是兩條不同的直線,、是兩個不同的平面,則的一個充分條件是()A.且 B.且 C.且 D.且8.年部分省市將實行“”的新高考模式,即語文、數學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為A. B.C. D.9.《九章算術》中將底面是直角三角形的直三棱柱稱為“塹堵”.某“塹堵”的三視圖如圖,則它的外接球的表面積為()A.4π B.8π C. D.10.甲、乙、丙、丁四位同學利用暑假游玩某風景名勝大峽谷,四人各自去景區(qū)的百里絕壁、千丈瀑布、原始森林、遠古村寨四大景點中的一個,每個景點去一人.已知:①甲不在遠古村寨,也不在百里絕壁;②乙不在原始森林,也不在遠古村寨;③“丙在遠古村寨”是“甲在原始森林”的充分條件;④丁不在百里絕壁,也不在遠古村寨.若以上語句都正確,則游玩千丈瀑布景點的同學是()A.甲 B.乙 C.丙 D.丁11.設i為數單位,為z的共軛復數,若,則()A. B. C. D.12.()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是第二象限角,且,,則____.14.二項式的展開式中所有項的二項式系數之和是64,則展開式中的常數項為______.15.已知向量,且向量與的夾角為_______.16.甲、乙、丙、丁四名同學報名參加淮南文明城市創(chuàng)建志愿服務活動,服務活動共有“走進社區(qū)”、“環(huán)境監(jiān)測”、“愛心義演”、“交通宣傳”等四個項目,每人限報其中一項,記事件為“4名同學所報項目各不相同”,事件為“只有甲同學一人報走進社區(qū)項目”,則的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數.(1)若,求函數的值域;(2)設為的三個內角,若,求的值;18.(12分)已知函數,曲線在點處的切線方程為求a,b的值;證明:.19.(12分)己知的內角的對邊分別為.設(1)求的值;(2)若,且,求的值.20.(12分)已知等差數列中,,數列的前項和.(1)求;(2)若,求的前項和.21.(12分)在直角坐標系中,曲線的參數方程為(為參數),坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若曲線、交于、兩點,是曲線上的動點,求面積的最大值.22.(10分)在平面直角坐標系xOy中,曲線l的參數方程為(為參數),以原點O為極點,x軸非負半軸為極軸建立極坐標系,曲線C的極坐標方程為4sin.(1)求曲線C的普通方程;(2)求曲線l和曲線C的公共點的極坐標.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
求解的導函數,研究其單調性,對任意不相等的正數,構造新函數,討論其單調性即可求解.【詳解】的定義域為,,當時,,故在單調遞減;不妨設,而,知在單調遞減,從而對任意、,恒有,即,,,令,則,原不等式等價于在單調遞減,即,從而,因為,所以實數a的取值范圍是故選:D.【點睛】此題考查含參函數研究單調性問題,根據參數范圍化簡后構造新函數轉換為含參恒成立問題,屬于一般性題目.2、C【解析】
先求出集合U,再根據補集的定義求出結果即可.【詳解】由題意得U=x|∵A=1,2∴CU故選C.【點睛】本題考查集合補集的運算,求解的關鍵是正確求出集合U和熟悉補集的定義,屬于簡單題.3、A【解析】
由已知新運算的意義就是取得中的最小值,因此函數,只有選項中的圖象符合要求,故選A.4、A【解析】
根據題意,分別求出再根據離散型隨機變量期望公式進行求解即可【詳解】由題可知,,,則解得,由可得,答案選A【點睛】本題考查離散型隨機變量期望的求解,易錯點為第三次發(fā)球分為兩種情況:三次都不成功、第三次成功5、B【解析】
根據函數表達式,把分母設為新函數,首先計算函數定義域,然后求導,根據導函數的正負判斷函數單調性,對應函數圖像得到答案.【詳解】設,,則的定義域為.,當,,單增,當,,單減,則.則在上單增,上單減,.選B.【點睛】本題考查了函數圖像的判斷,用到了換元的思想,簡化了運算,同學們還可以用特殊值法等方法進行判斷.6、A【解析】
根據復數的基本運算求解即可.【詳解】.故選:A【點睛】本題主要考查了復數的基本運算,屬于基礎題.7、B【解析】由且可得,故選B.8、B【解析】
甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B.9、B【解析】
由三視圖判斷出原圖,將幾何體補形為長方體,由此計算出幾何體外接球的直徑,進而求得球的表面積.【詳解】根據題意和三視圖知幾何體是一個底面為直角三角形的直三棱柱,底面直角三角形的斜邊為2,側棱長為2且與底面垂直,因為直三棱柱可以復原成一個長方體,該長方體外接球就是該三棱柱的外接球,長方體對角線就是外接球直徑,則,那么.故選:B【點睛】本小題主要考查三視圖還原原圖,考查幾何體外接球的有關計算,屬于基礎題.10、D【解析】
根據演繹推理進行判斷.【詳解】由①②④可知甲乙丁都不在遠古村寨,必有丙同學去了遠古村寨,由③可知必有甲去了原始森林,由④可知丁去了千丈瀑布,因此游玩千丈瀑布景點的同學是?。蔬x:D.【點睛】本題考查演繹推理,掌握演繹推理的定義是解題基礎.11、A【解析】
由復數的除法求出,然后計算.【詳解】,∴.故選:A.【點睛】本題考查復數的乘除法運算,考查共軛復數的概念,掌握復數的運算法則是解題關鍵.12、B【解析】
利用復數代數形式的乘除運算化簡得答案.【詳解】.故選B.【點睛】本題考查復數代數形式的乘除運算,考查了復數的基本概念,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由是第二象限角,且,可得,由及兩角和的正切公式可得的值.【詳解】解:由是第二象限角,且,可得,,由,可得,代入,可得,故答案為:.【點睛】本題主要考查同角三角函數的基本關系及兩角和的正切公式,相對不難,注意運算的準確性.14、【解析】
由二項式系數性質求出,由二項展開式通項公式得出常數項的項數,從而得常數項.【詳解】由題意,.展開式通項為,由得,∴常數項為.故答案為:.【點睛】本題考查二項式定理,考查二項式系數的性質,掌握二項展開式通項公式是解題關鍵.15、1【解析】
根據向量數量積的定義求解即可.【詳解】解:∵向量,且向量與的夾角為,∴||;所以:?()2cos2﹣2=1,故答案為:1.【點睛】本題主要考查平面向量的數量積的定義,屬于基礎題.16、【解析】
根據條件概率的求法,分別求得,再代入條件概率公式求解.【詳解】根據題意得所以故答案為:【點睛】本題主要考查條件概率的求法,還考查了理解辨析的能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)將,利用三角恒等變換轉化為:,,再根據正弦函數的性質求解,(2)根據,得,又為的內角,得到,再根據,利用兩角和與差的余弦公式求解,【詳解】(1),,,,即的值域為;(2)由,得,又為的內角,所以,又因為在中,,所以,所以.【點睛】本題主要考查三角恒等變換和三角函數的性質,還考查了運算求解的能力,屬于中檔題,18、(1);(2)見解析【解析】分析:第一問結合導數的幾何意義以及切點在切線上也在函數圖像上,從而建立關于的等量關系式,從而求得結果;第二問可以有兩種方法,一是將不等式轉化,構造新函數,利用導數研究函數的最值,從而求得結果,二是利用中間量來完成,這樣利用不等式的傳遞性來完成,再者這種方法可以簡化運算.詳解:(1)解:,由題意有,解得(2)證明:(方法一)由(1)知,.設則只需證明,設則,在上單調遞增,,使得且當時,,當時,當時,,單調遞減當時,,單調遞增,由,得,,設,,當時,,在單調遞減,,因此(方法二)先證當時,,即證設,則,且,在單調遞增,在單調遞增,則當時,(也可直接分析顯然成立)再證設,則,令,得且當時,,單調遞減;當時,,單調遞增.,即又,點睛:該題考查的是有關利用導數研究函數的綜合問題,在求解的過程中,涉及到的知識點有導數的幾何意義,有關切線的問題,還有就是應用導數證明不等式,可以構造新函數,轉化為最值問題來解決,也可以借用不等式的傳遞性,借助中間量來完成.19、(1)(2)【解析】
(1)由正弦定理將,轉化,即,由余弦定理求得,再由平方關系得再求解.(2)由,得,結合再求解.【詳解】(1)由正弦定理,得,即,則,而,又,解得,故.(2)因為,則,因為,故,故,解得,故,則.【點睛】本題考查正弦定理、余弦定理、三角形的面積公式,考查運算求解能力以及化歸與轉化思想,屬于中檔題.20、(1),;(2).【解析】
(1)由條件得出方程組,可求得的通項,當時,,可得,當時,,得出是以1為首項,2為公比的等比數列,可求得的通項;(2)由(1)可知,,分n為偶數和n為奇數分別求得.【詳解】(1)由條件知,,,當時,,即,當時,,是以1為首項,2為公比的等比數列,;(2)由(1)可知,,當n為偶數時,當n為奇數時,綜上,【點睛】本題考查等差數列和等比數列的通項的求得,以及其前n項和,注意分n為偶數和n為奇數兩種情況分別求得其數列的和,屬于中檔題.21、(1),;(2).【解析】
(1)在曲線的參數方程中消去參數,可得出曲線的普通方程,將曲線的極坐標方程變形為,進而可得出曲線的直角坐標方程;(2)求出點到直線的最大距離,以及直線截圓所得弦長,利用三角形的面積公式可求得面積的最大值.【詳解】(1)由曲線的參數方程得,.所以,曲線的普通方程為,將曲線的極坐標方程變形為,所以,曲線的直角坐標方程為;(2)曲線是圓心為,半徑為為圓,圓心到直線的距離為,所以,點到直線的最大距離為,,因此,的面積為最大值為.【點睛】本題考查曲線的參數方程、極坐標方程與普通方程之間的相互轉換,同時也考查了直線截圓所形成的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 使用機器合同范例
- 烘干合同范例
- 2024至2030年休閑背心項目投資價值分析報告
- 陜西能源職業(yè)技術學院《建筑構造課程設計》2023-2024學年第一學期期末試卷
- 陜西旅游烹飪職業(yè)學院《中國文化通論》2023-2024學年第一學期期末試卷
- 陜西旅游烹飪職業(yè)學院《地方政府管理》2023-2024學年第一學期期末試卷
- 監(jiān)事合同范例
- 電腦銷售安裝合同范例
- 2024年海上集裝箱租賃運輸協(xié)議
- 廢棄電廠設備出售合同范例
- 2024年度幼兒園安全副園長思想工作總結
- 垃圾填埋場運行管理方案
- 電力工程起重吊裝施工方案
- 2024年業(yè)務員薪酬管理制度(五篇)
- 【公開課】+紀念與象征-空間中的實體藝術+課件高中美術人美版(2019)美術鑒賞
- GB/T 44588-2024數據安全技術互聯(lián)網平臺及產品服務個人信息處理規(guī)則
- 大學生職業(yè)生涯規(guī)劃成品
- 2024-2025學年度北師大版八年級上冊物理期中模擬測試卷
- 中國近代人物研究學習通超星期末考試答案章節(jié)答案2024年
- 2024年中考數學真題完全解讀(湖南卷)
- 《概率論與數理統(tǒng)計》教材
評論
0/150
提交評論