版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023高考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知f(x),g(x)都是偶函數(shù),且在[0,+∞)上單調遞增,設函數(shù)F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,則()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)2.設m,n為直線,、為平面,則的一個充分條件可以是()A.,, B.,C., D.,3.已知復數(shù)滿足,則的值為()A. B. C. D.24.已知集合,集合,則A. B.或C. D.5.復數(shù),若復數(shù)在復平面內(nèi)對應的點關于虛軸對稱,則等于()A. B. C. D.6.某三棱錐的三視圖如圖所示,則該三棱錐的體積為A. B. C.2 D.7.若復數(shù)滿足(為虛數(shù)單位),則其共軛復數(shù)的虛部為()A. B. C. D.8.已知平面,,直線滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件9.已知集合的所有三個元素的子集記為.記為集合中的最大元素,則()A. B. C. D.10.將函數(shù)的圖像向左平移個單位長度后,得到的圖像關于坐標原點對稱,則的最小值為()A. B. C. D.11.已知純虛數(shù)滿足,其中為虛數(shù)單位,則實數(shù)等于()A. B.1 C. D.212.“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構成一個數(shù)列,則該數(shù)列各項之和為()A.56383 B.57171 C.59189 D.61242二、填空題:本題共4小題,每小題5分,共20分。13.已知平面向量,的夾角為,且,則=____14.已知橢圓,,若橢圓上存在點使得為等邊三角形(為原點),則橢圓的離心率為_________.15.在中,已知是的中點,且,點滿足,則的取值范圍是_______.16.如圖是由3個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,設,,則的面積為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)記函數(shù)的最小值為.(1)求的值;(2)若正數(shù),,滿足,證明:.18.(12分)已知的圖象在處的切線方程為.(1)求常數(shù)的值;(2)若方程在區(qū)間上有兩個不同的實根,求實數(shù)的值.19.(12分)某貧困地區(qū)幾個丘陵的外圍有兩條相互垂直的直線型公路,以及鐵路線上的一條應開鑿的直線穿山隧道,為進一步改善山區(qū)的交通現(xiàn)狀,計劃修建一條連接兩條公路和山區(qū)邊界的直線型公路,以所在的直線分別為軸,軸,建立平面直角坐標系,如圖所示,山區(qū)邊界曲線為,設公路與曲線相切于點,的橫坐標為.(1)當為何值時,公路的長度最短?求出最短長度;(2)當公路的長度最短時,設公路交軸,軸分別為,兩點,并測得四邊形中,,,千米,千米,求應開鑿的隧道的長度.20.(12分)在平面直角坐標系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標原點為極點,軸的正半軸為極軸的極坐標系中,點的極坐標為,直線經(jīng)過點.曲線的極坐標方程為.(1)求直線的普通方程與曲線的直角坐標方程;(2)過點作直線的垂線交曲線于兩點(在軸上方),求的值.21.(12分)某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過度的部分按元/度收費,超過度但不超過度的部分按元/度收費,超過度的部分按元/度收費.(I)求某戶居民用電費用(單位:元)關于月用電量(單位:度)的函數(shù)解析式;(Ⅱ)為了了解居民的用電情況,通過抽樣,獲得了今年1月份戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這戶居民中,今年1月份用電費用不超過元的占,求,的值;(Ⅲ)在滿足(Ⅱ)的條件下,若以這戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點代替,記為該居民用戶1月份的用電費用,求的分布列和數(shù)學期望.22.(10分)已知圓的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程是是參數(shù)),若直線與圓相切,求實數(shù)的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】試題分析:由題意得,F(xiàn)(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(xiàn)(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2f(a),∴F(-a)=F(a),綜上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故選A.考點:1.函數(shù)的性質;2.分類討論的數(shù)學思想.【思路點睛】本題在在解題過程中抓住偶函數(shù)的性質,避免了由于單調性不同導致1-a與1+a大小不明確的討論,從而使解題過程得以優(yōu)化,另外,不要忘記定義域,如果要研究奇函數(shù)或者偶函數(shù)的值域、最值、單調性等問題,通常先在原點一側的區(qū)間(對奇(偶)函數(shù)而言)或某一周期內(nèi)(對周期函數(shù)而言)考慮,然后推廣到整個定義域上.2.B【解析】
根據(jù)線面垂直的判斷方法對選項逐一分析,由此確定正確選項.【詳解】對于A選項,當,,時,由于不在平面內(nèi),故無法得出.對于B選項,由于,,所以.故B選項正確.對于C選項,當,時,可能含于平面,故無法得出.對于D選項,當,時,無法得出.綜上所述,的一個充分條件是“,”故選:B【點睛】本小題主要考查線面垂直的判斷,考查充分必要條件的理解,屬于基礎題.3.C【解析】
由復數(shù)的除法運算整理已知求得復數(shù)z,進而求得其模.【詳解】因為,所以故選:C【點睛】本題考查復數(shù)的除法運算與求復數(shù)的模,屬于基礎題.4.C【解析】
由可得,解得或,所以或,又,所以,故選C.5.A【解析】
先通過復數(shù)在復平面內(nèi)對應的點關于虛軸對稱,得到,再利用復數(shù)的除法求解.【詳解】因為復數(shù)在復平面內(nèi)對應的點關于虛軸對稱,且復數(shù),所以所以故選:A【點睛】本題主要考查復數(shù)的基本運算和幾何意義,屬于基礎題.6.A【解析】由給定的三視圖可知,該幾何體表示一個底面為一個直角三角形,且兩直角邊分別為和,所以底面面積為高為的三棱錐,所以三棱錐的體積為,故選A.7.D【解析】
由已知等式求出z,再由共軛復數(shù)的概念求得,即可得虛部.【詳解】由zi=1﹣i,∴z=,所以共軛復數(shù)=-1+,虛部為1故選D.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算和共軛復數(shù)的基本概念,屬于基礎題.8.A【解析】
,是相交平面,直線平面,則“”“”,反之,直線滿足,則或//或平面,即可判斷出結論.【詳解】解:已知直線平面,則“”“”,反之,直線滿足,則或//或平面,“”是“”的充分不必要條件.故選:A.【點睛】本題考查了線面和面面垂直的判定與性質定理、簡易邏輯的判定方法,考查了推理能力與計算能力.9.B【解析】
分類討論,分別求出最大元素為3,4,5,6的三個元素子集的個數(shù),即可得解.【詳解】集合含有個元素的子集共有,所以.在集合中:最大元素為的集合有個;最大元素為的集合有;最大元素為的集合有;最大元素為的集合有;所以.故選:.【點睛】此題考查集合相關的新定義問題,其本質在于弄清計數(shù)原理,分類討論,分別求解.10.B【解析】
由余弦的二倍角公式化簡函數(shù)為,要想在括號內(nèi)構造變?yōu)檎液瘮?shù),至少需要向左平移個單位長度,即為答案.【詳解】由題可知,對其向左平移個單位長度后,,其圖像關于坐標原點對稱故的最小值為故選:B【點睛】本題考查三角函數(shù)圖象性質與平移變換,還考查了余弦的二倍角公式逆運用,屬于簡單題.11.B【解析】
先根據(jù)復數(shù)的除法表示出,然后根據(jù)是純虛數(shù)求解出對應的的值即可.【詳解】因為,所以,又因為是純虛數(shù),所以,所以.故選:B.【點睛】本題考查復數(shù)的除法運算以及根據(jù)復數(shù)是純虛數(shù)求解參數(shù)值,難度較易.若復數(shù)為純虛數(shù),則有.12.C【解析】
根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構成等差數(shù)列,然后根據(jù)等差數(shù)列的前項和公式,可得結果.【詳解】被5除余3且被7除余2的正整數(shù)構成首項為23,公差為的等差數(shù)列,記數(shù)列則令,解得.故該數(shù)列各項之和為.故選:C.【點睛】本題考查等差數(shù)列的應用,屬基礎題。二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
根據(jù)平面向量模的定義先由坐標求得,再根據(jù)平面向量數(shù)量積定義求得;將化簡并代入即可求得.【詳解】,則,平面向量,的夾角為,則由平面向量數(shù)量積定義可得,根據(jù)平面向量模的求法可知,代入可得,解得,故答案為:1.【點睛】本題考查了平面向量模的求法及簡單應用,平面向量數(shù)量積的定義及運算,屬于基礎題.14.【解析】
根據(jù)題意求出點N的坐標,將其代入橢圓的方程,求出參數(shù)m的值,再根據(jù)離心率的定義求值.【詳解】由題意得,將其代入橢圓方程得,所以.故答案為:.【點睛】本題考查了橢圓的標準方程及幾何性質,屬于中檔題.15.【解析】
由中點公式的向量形式可得,即有,設,有,再分別討論三點共線和不共線時的情況,找到的關系,即可根據(jù)函數(shù)知識求出范圍.【詳解】是的中點,∴,即設,于是(1)當共線時,因為,①若點在之間,則,此時,;②若點在的延長線上,則,此時,.(2)當不共線時,根據(jù)余弦定理可得,解得,由,解得.綜上,故答案為:.【點睛】本題主要考查學中點公式的向量形式和數(shù)量積的定義的應用,以及余弦定理的應用,涉及到函數(shù)思想和分類討論思想的應用,解題關鍵是建立函數(shù)關系式,屬于中檔題.16.【解析】
根據(jù)個全等的三角形,得到,設,求得,利用余弦定理求得,再利用三角形的面積公式,求得三角形的面積.【詳解】由于三角形是由個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,所以.在三角形中,.設,則.由余弦定理得,解得.所以三角形邊長為,面積為.故答案為:【點睛】本題考查了等邊三角形的面積計算公式、余弦定理、全等三角形的性質,考查了推理能力與計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)證明見解析【解析】
(1)將函數(shù)轉化為分段函數(shù)或利用絕對值三角不等式進行求解;(2)利用基本不等式或柯西不等式證明即可.【詳解】解法一:(1)當時,,當,,當時,,所以解法二:(1)如圖當時,解法三:(1)當且僅當即時,等號成立.當時解法一:(2)由題意可知,,因為,,,所以要證明不等式,只需證明,因為成立,所以原不等式成立.解法二:(2)因為,,,所以,,又因為,所以,所以,原不等式得證.補充:解法三:(2)由題意可知,,因為,,,所以要證明不等式,只需證明,由柯西不等式得:成立,所以原不等式成立.【點睛】本題主要考查了絕對值函數(shù)的最值求解,不等式的證明,絕對值三角不等式,基本不等式及柯西不等式的應用,考查了學生的邏輯推理和運算求解能力.18.(1);(2)或.【解析】
(1)求出,由,建立方程求解,即可求出結論;(2)根據(jù)函數(shù)的單調區(qū)間,極值,做出函數(shù)在的圖象,即可求解.【詳解】(1),由題意知,解得(舍去)或.(2)當時,故方程有根,根為或,+0-0+極大值極小值由表可見,當時,有極小值0.由上表可知的減函數(shù)區(qū)間為,遞增區(qū)間為,.因為,.由數(shù)形結合可得或.【點睛】本題考查導數(shù)的幾何意義,應用函數(shù)的圖象是解題的關鍵,意在考查直觀想象、邏輯推理和數(shù)學計算能力,屬于中檔題.19.(1)當時,公路的長度最短為千米;(2)(千米).【解析】
(1)設切點的坐標為,利用導數(shù)的幾何意義求出切線的方程為,根據(jù)兩點間距離得出,構造函數(shù),利用導數(shù)求出單調性,從而得出極值和最值,即可得出結果;(2)在中,由余弦定理得出,利用正弦定理,求出,最后根據(jù)勾股定理即可求出的長度.【詳解】(1)由題可知,設點的坐標為,又,則直線的方程為,由此得直線與坐標軸交點為:,則,故,設,則.令,解得=10.當時,是減函數(shù);當時,是增函數(shù).所以當時,函數(shù)有極小值,也是最小值,所以,此時.故當時,公路的長度最短,最短長度為千米.(2)在中,,,所以,所以,根據(jù)正弦定理,,,,又,所以.在中,,,由勾股定理可得,即,解得,(千米).【點睛】本題考查利用導數(shù)解決實際的最值問題,涉及構造函數(shù)法以及利用導數(shù)研究函數(shù)單調性和極值,還考查正余弦定理的實際應用,還考查解題分析能力和計算能力.20.(1),;(2)【解析】
(1)利用代入法消去參數(shù)可得到直線的普通方程,利用公式可得到曲線的直角坐標方程;(2)設直線的參數(shù)方程為(為參數(shù)),代入得,根據(jù)直線參數(shù)方程的幾何意義,利用韋達定理可得結果.【詳解】(1)由題意得點的直角坐標為,將點代入得則直線的普通方程為.由得,即.故曲線的直角坐標方程為.(2)設直線的參數(shù)方程為(為參數(shù)),代入得.設對應參數(shù)為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【講練通】2021版高中歷史岳麓版必修1-單元質量評估(三)
- 六年級上冊數(shù)學教研組工作計劃范文評價
- 【學練考】2021-2022蘇教版化學必修1練習-專題3-從礦物到基礎材料
- 三年級數(shù)學(上)計算題專項練習附答案
- 五年級數(shù)學(小數(shù)乘除法)計算題專項練習及答案匯編
- 全程方略2021屆高考數(shù)學專項精析精煉:2014年考點48-隨機事件的概率、古典概型、幾何概型
- 家長進課堂小學生食品安演示教學
- 增塑劑聚酯薄膜行業(yè)分析
- 2018-2019學年高中生物-第三章-遺傳的分子基礎本章知識體系構建課件-浙科版必修2
- (期末押題卷)期末重難點高頻易錯培優(yōu)卷(試題)-2024-2025學年四年級上冊數(shù)學人教版
- 【小米公司財務共享服務中心的構建與運行探究8200字(論文)】
- 成人癌性疼痛護理-中華護理學會團體標準2019
- 勞動保障監(jiān)察條例
- 2023年建筑繼續(xù)教育考試:安全員繼續(xù)教育真題模擬匯編(共830題)
- 冷卻塔驗收表
- 外科科主任工作計劃
- 施工圖設計提資管控細則
- 人教部編版八年級語文上冊名著導讀《紅星照耀中國》復習素材
- 【個人簡歷】大學生職業(yè)生涯規(guī)劃書10篇
- 患者滿意度調查分析
- 印刷公司績效考核KPI指標庫
評論
0/150
提交評論