![湖南長沙市青竹湖湘一外國語學校2022年數(shù)學九上期末經(jīng)典模擬試題含解析_第1頁](http://file4.renrendoc.com/view/59bffee339581a3fb4582f1bc0efc4d3/59bffee339581a3fb4582f1bc0efc4d31.gif)
![湖南長沙市青竹湖湘一外國語學校2022年數(shù)學九上期末經(jīng)典模擬試題含解析_第2頁](http://file4.renrendoc.com/view/59bffee339581a3fb4582f1bc0efc4d3/59bffee339581a3fb4582f1bc0efc4d32.gif)
![湖南長沙市青竹湖湘一外國語學校2022年數(shù)學九上期末經(jīng)典模擬試題含解析_第3頁](http://file4.renrendoc.com/view/59bffee339581a3fb4582f1bc0efc4d3/59bffee339581a3fb4582f1bc0efc4d33.gif)
![湖南長沙市青竹湖湘一外國語學校2022年數(shù)學九上期末經(jīng)典模擬試題含解析_第4頁](http://file4.renrendoc.com/view/59bffee339581a3fb4582f1bc0efc4d3/59bffee339581a3fb4582f1bc0efc4d34.gif)
![湖南長沙市青竹湖湘一外國語學校2022年數(shù)學九上期末經(jīng)典模擬試題含解析_第5頁](http://file4.renrendoc.com/view/59bffee339581a3fb4582f1bc0efc4d3/59bffee339581a3fb4582f1bc0efc4d35.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.“圓材埋壁”是我國古代著名的數(shù)學著作《九章算術》中的一個問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長六寸,問徑幾何?”用現(xiàn)代的數(shù)學語言表述是:“CD為的直徑,弦,垂足為E,CE=1寸,AB=10寸,求直徑CD的長”,依題意得CD的長為()A.12寸 B.13寸 C.24寸 D.26寸2.如圖,等邊的邊長為是邊上的中線,點是邊上的中點.如果點是上的動點,那么的最小值為()A. B. C. D.3.一元二次方程x2﹣x﹣2=0的解是()A.x1=﹣1,x2=﹣2B.x1=1,x2=﹣2C.x1=1,x2=2D.x1=﹣1,x2=24.下列事件為必然事件的是()A.打開電視機,正在播放新聞 B.任意畫一個三角形,其內角和是C.買一張電影票,座位號是奇數(shù)號 D.擲一枚質地均勻的硬幣,正面朝上5.若二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(﹣1,0)和(3,0),則方程ax2+bx+c=0的解為()A.x1=﹣3,x2=﹣1 B.x1=1,x2=3C.x1=﹣1,x2=3 D.x1=﹣3,x2=16.如圖,直線y=x+2與x軸、y軸分別交于點A和點B,點C、D分別為線段AB、OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標為()A.(﹣,0) B.(﹣,0) C.(﹣,0) D.(﹣,0)7.對于問題:如圖1,已知∠AOB,只用直尺和圓規(guī)判斷∠AOB是否為直角?小意同學的方法如圖2:在OA、OB上分別取C、D,以點C為圓心,CD長為半徑畫弧,交OB的反向延長線于點E,若測量得OE=OD,則∠AOB=90o.則小意同學判斷的依據(jù)是()A.等角對等邊 B.線段中垂線上的點到線段兩段距離相等C.垂線段最短 D.等腰三角形“三線合一”8.如圖,、分別與相切于、兩點,點為上一點,連接,,若,則的度數(shù)為()A. B. C. D.9.若點A(1,y1)、B(2,y2)都在反比例函數(shù)的圖象上,則y1、y2的大小關系為A.y1<y2 B.y1≤y2 C.y1>y2 D.y1≥y210.以原點為中心,把點逆時針旋轉,得點,則點坐標是()A. B. C. D.二、填空題(每小題3分,共24分)11.甲、乙兩人在米短跑訓練中,某次的平均成績相等,甲的方差是,乙的方差是,這次短跑訓練成績較穩(wěn)定的是___(填“甲”或“乙”)12.如圖,有一張直徑為1.2米的圓桌,其高度為0.8米,同時有一盞燈距地面2米,圓桌在水平地面上的影子是,∥,和是光線,建立如圖所示的平面直角坐標系,其中點的坐標是.那么點的坐標是_________.13.已知⊙O的周長等于6πcm,則它的內接正六邊形面積為_____cm214.某居民小區(qū)為了解小區(qū)500戶居民家庭平均月使用塑料袋的數(shù)量情況,隨機調查了10戶居民家庭月使用塑料袋的數(shù)量,結果如下(單位:只):65,70,85,74,86,78,74,92,82,1.根據(jù)統(tǒng)計情況,估計該小區(qū)這500戶家庭每月一共使用塑料袋_________只.15.如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,分別以A,B為圓心,以的長為半徑作圓,將Rt△ABC截去兩個扇形,則剩余(陰影)部分的面積為_____.16.如圖,點、在上,點在軸的正半軸上,點是上第一象限內的一點,若,則圓心的坐標為__.17.如圖,把繞著點順時針方向旋轉角度(),得到,若,,三點在同一條直線上,,則的度數(shù)是___________.18.二次函數(shù)中的自變量與函數(shù)值的部分對應值如下表:…………則的解為________.三、解答題(共66分)19.(10分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=(x>0)的圖象交于點P(n,2),與x軸交于點A(-4,0),與y軸交于點C,PB⊥x軸于點B,點A與點B關于y軸對稱.(1)求一次函數(shù),反比例函數(shù)的表達式;(2)求證:點C為線段AP的中點;(3)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形.如果存在,說明理由并求出點D的坐標;如果不存在,說明理由.20.(6分)下面是小華同學設計的“作三角形的高線”的尺規(guī)作圖的過程.已知:如圖1,△ABC.求作:AB邊上的高線.作法:如圖2,①分別以A,C為圓心,大于長為半徑作弧,兩弧分別交于點D,E;②作直線DE,交AC于點F;③以點F為圓心,F(xiàn)A長為半徑作圓,交AB的延長線于點M;④連接CM.則CM為所求AB邊上的高線.根據(jù)上述作圖過程,回答問題:(1)用直尺和圓規(guī),補全圖2中的圖形;(2)完成下面的證明:證明:連接DA,DC,EA,EC,∵由作圖可知DA=DC=EA=EC,∴DE是線段AC的垂直平分線.∴FA=FC.∴AC是⊙F的直徑.∴∠AMC=______°(___________________________________)(填依據(jù)),∴CM⊥AB.即CM就是AB邊上的高線.21.(6分)在菱形中,,點是射線上一動點,以為邊向右側作等邊,點的位置隨點的位置變化而變化.(1)如圖1,當點在菱形內部或邊上時,連接,與的數(shù)量關系是,與的位置關系是;(2)當點在菱形外部時,(1)中的結論是否還成立?若成立,請予以證明;若不成立,請說明理由(選擇圖2,圖3中的一種情況予以證明或說理).(3)如圖4,當點在線段的延長線上時,連接,若,,求四邊形的面積.22.(8分)已知四邊形為的內接四邊形,直徑與對角線相交于點,作于,與過點的直線相交于點,.(1)求證:為的切線;(2)若平分,求證:;(3)在(2)的條件下,為的中點,連接,若,的半徑為,求的長.23.(8分)如圖,破殘的圓形輪片上,弦AB的垂直平分線交弧AB于點C,交弦AB于點D.已知:AB,CD.(1)求作此殘片所在的圓(不寫作法,保留作圖痕跡)(2)求(1)中所作圓的半徑24.(8分)已知x2﹣8x+16﹣m2=0(m≠0)是關于x的一元二次方程(1)證明:此方程總有兩個不相等的實數(shù)根;(2)若等腰△ABC的一邊長a=6,另兩邊長b、c是該方程的兩個實數(shù)根,求△ABC的面積.25.(10分)初中生對待學習的態(tài)度一直是教育工作者關注的問題之一.為此某市教育局對該市部分學校的八年級學生對待學習的態(tài)度進行了一次抽樣調查(把學習態(tài)度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調查結果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:(1)此次抽樣調查中,共調查了名學生;(2)將圖①補充完整;(3)求出圖②中C級所占的圓心角的度數(shù);(4)根據(jù)抽樣調查結果,請你估計該市近20000名初中生中大約有多少名學生學習態(tài)度達標(達標包括A級和B級)?26.(10分)如圖,在平行四邊形ABCD中,∠ABC的平分線BF分別與AC、AD交于點E、F.(1)求證:AB=AF;(2)當AB=3,BC=4時,求的值.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】連接AO,設直徑CD的長為寸,則半徑OA=OC=寸,然后利用垂徑定理得出AE,最后根據(jù)勾股定理進一步求解即可.【詳解】如圖,連接AO,設直徑CD的長為寸,則半徑OA=OC=寸,∵CD為的直徑,弦,垂足為E,AB=10寸,∴AE=BE=AB=5寸,根據(jù)勾股定理可知,在Rt△AOE中,,∴,解得:,∴,即CD長為26寸.【點睛】本題主要考查了垂徑定理與勾股定理的綜合運用,熟練掌握相關概念是解題關鍵.2、D【分析】要求EP+CP的最小值,需考慮通過作輔助線轉化EP,CP的值,從而找出其最小值求解【詳解】連接BE,與AD交于點G.∵△ABC是等邊三角形,AD是BC邊上的中線,∴AD⊥BC,∴AD是BC的垂直平分線,∴點C關于AD的對稱點為點B,∴BE就是EP+CP的最小值.∴G點就是所求點,即點G與點P重合,∵等邊△ABC的邊長為8,E為AC的中點,∴CE=4,BE⊥AC,在直角△BEC中,BE=,∴EP+CP的最小值為,故選D.【點睛】此題考查軸對稱-最短路線問題,等邊三角形的對稱性、三線合一的性質以及勾股定理的運用,熟練掌握,即可解題.3、D【解析】試題分析:利用因式分解法解方程即可.解:(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故選D.考點:解一元二次方程-因式分解法.4、B【分析】必然事件就是一定發(fā)生的事件,即發(fā)生的概率是1的事件.【詳解】∵A,C,D選項為不確定事件,即隨機事件,故不符合題意.∴一定發(fā)生的事件只有B,任意畫一個三角形,其內角和是,是必然事件,符合題意.故選B.【點睛】本題考查的是對必然事件的概念的理解.解決此類問題,要學會關注身邊的事物,并用數(shù)學的思想和方法去分析、看待、解決問題,提高自身的數(shù)學素養(yǎng).用到的知識點為:必然事件指在一定條件下一定發(fā)生的事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.5、C【分析】利用拋物線與x軸的交點問題確定方程ax2+bx+c=0的解.【詳解】解:∵二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(﹣1,0)和(1,0),∴方程ax2+bx+c=0的解為x1=﹣1,x2=1.故選:C.【點睛】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程.也考查了二次函數(shù)的性質.6、A【分析】根據(jù)一次函數(shù)解析式可以求得,,根據(jù)平面直角坐標系里線段中點坐標公式可得,,根據(jù)軸對稱的性質和兩點之間線段最短的公理求出點關于軸的對稱點,連接,線段的長度即是的最小值,此時求出解析式,再解其與軸的交點即可.【詳解】解:,,,,同理可得點關于軸的對稱點;連接,設其解析式為,代入與可得:,令,解得..【點睛】本題是結合了一次函數(shù)的動點最值問題,熟練掌握一次函數(shù)的圖象與性質,把點的坐標與線段長度靈活轉化為兩點間的問題是解答關鍵.7、B【分析】由垂直平分線的判定定理,即可得到答案.【詳解】解:根據(jù)題意,∵CD=CE,OE=OD,∴AO是線段DE的垂直平分線,∴∠AOB=90°;則小意同學判斷的依據(jù)是:線段中垂線上的點到線段兩段距離相等;故選:B.【點睛】本題考查了垂直平分線的判定定理,解題的關鍵是熟練掌握垂直平分線的判定定理進行判斷.8、C【分析】先利用切線的性質得∠OAP=∠OBP=90°,再利用四邊形的內角和計算出∠AOB的度數(shù),然后根據(jù)圓周角定理計算∠ACB的度數(shù).【詳解】解:連接、,∵、分別與相切于、兩點,∴,,∴.∴,∴.故選C.【點睛】本題考查了切線的性質:圓的切線垂直于經(jīng)過切點的半徑.也考查了圓周角定理.9、C【解析】根據(jù)反比例函數(shù)圖象的增減性進行判斷:根據(jù)反比例函數(shù)的性質:當時,圖象分別位于第一、三象限,在每個象限內,y隨x的增大而減??;當時,圖象分別位于第二、四象限,在每個象限內,y隨x的增大而增大.∵反比例函數(shù)的解析式中的,∴點A(1,y1)、B(1,y1)都位于第四象限.又∵1<1,∴y1>y1.故選C.10、B【分析】畫出圖形,利用圖象法即可解決問題.【詳解】觀察圖象可知B(-5,4),故選B.【點睛】本題考查坐標與圖形變化-旋轉,解題的關鍵是理解題意,靈活運用所學知識解決問題二、填空題(每小題3分,共24分)11、乙【分析】根據(jù)方差的含義,可判斷誰的成績較穩(wěn)定.【詳解】在一組數(shù)據(jù)中,各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差,方差是刻畫數(shù)據(jù)的波動大小程度,方差越小,代表數(shù)據(jù)波動越小.因此,在本題中,方差越小,代表成績越穩(wěn)定,故乙的訓練成績比較穩(wěn)定.【點睛】本題考查方差的概念和含義.12、【分析】先證明△ABC∽△ADE,再根據(jù)相似三角形的性質:相似三角形的對應高的比等于相似比求解即可.【詳解】解:∵BC∥DE,∴△ABC∽△ADE,∴,∵BC=1.2,∴DE=2,∴E(4,0).故答案為:(4,0).【點睛】本題考查了中心投影,相似三角形的判定和性質,準確識圖,熟練掌握相似三角形的對應高的比等于相似比是解題的關鍵.13、【分析】首先過點O作OH⊥AB于點H,連接OA,OB,由⊙O的周長等于6πcm,可得⊙O的半徑,又由圓的內接多邊形的性質,即可求得答案.【詳解】解:如圖,過點O作OH⊥AB于點H,連接OA,OB,∴AH=AB,∵⊙O的周長等于6πcm,∴⊙O的半徑為:3cm,∵∠AOB=×360°=60°,OA=OB,∴△OAB是等邊三角形,∴AB=OA=3cm,∴AH=cm,∴OH==,∴S正六邊形ABCDEF=6S△OAB=6××3×=,故答案為:.【點睛】本題考查的是正多邊形和圓,熟知正六邊形的半徑與邊長相等是解答此題的關鍵.14、2【分析】先求出10戶居民平均月使用塑料袋的數(shù)量,然后估計500戶家庭每月一共使用塑料袋的數(shù)量即可.【詳解】解:10戶居民平均月使用塑料袋的數(shù)量為:(65+70+85+74+86+78+74+92+82+1)÷10=80,∴500×80=2(只),故答案為2.【點睛】本題考查統(tǒng)計思想,用樣本平均數(shù)估計總體平均數(shù),10戶居民平均月使用塑料袋的數(shù)量是解答本題的關鍵.15、6﹣π【分析】利用勾股定理得出AB的長,再利用圖中陰影部分的面積是:S△ABC﹣S扇形面積求出即可.【詳解】解:∵Rt△ABC中,∠ABC=90°,AC=4,BC=3,∴AB==5,∴S陰影部分=×3×4﹣=6﹣π.故答案是:6﹣π.【點睛】此題主要考查不規(guī)則圖形的面積求解,解題的關鍵是熟知割補法的應用.16、【分析】分別過點B,C作x軸的垂線,垂足分別為E,F(xiàn),先通過圓周角定理可得出∠BAC=90°,再證明△BEA≌△AFC,得出AE=CF=4,再根據(jù)AO=AE-OE可得出結果.【詳解】解:分別過點B,C作x軸的垂線,垂足分別為E,F(xiàn),∵∠D=45°,∴∠BAC=90°.∴∠BAE+∠ABE=90°,∠BAE+∠CAF=90°,∴∠ABE=∠CAF,又AB=AC,∠AEB=∠AFC=90°,∴△BEA≌△AFC(AAS),∴AE=CF,又∵B,C的坐標為、,∴OE=1,CF=4,∴OA=AE-OE=CF-OE=1.∴點A的坐標為(1,0).故答案為:(1,0).【點睛】本題主要考查圓周角定理,以及全等三角形的判定與性質,根據(jù)已知條件作輔助線構造出全等三角形是解題的關鍵.17、【分析】首先根據(jù)鄰補角定義求出∠BCC′=180°-∠BCB′=134°,再根據(jù)旋轉的性質得出∠BCA=∠C′,AC=AC′,根據(jù)等邊對等角進一步可得出∠BCA=∠ACC′=∠C′,再利用三角形內角和求出∠CAC′的度數(shù),從而得出α的度數(shù)..【詳解】解:∵B,C,C′三點在同一條直線上,∴∠BCC′=180°-∠BCB′=134°,
又根據(jù)旋轉的性質可得,∠CAC′=∠BAB′=α,∠BCA=∠C′,AC=AC′,∴∠ACC′=∠C′,∴∠BCA=∠ACC′=∠BCC′=67°=∠C′,
∴∠CAC′=180°-∠ACC′-∠C′=46°,
∴α=46°.
故答案為:46°.【點睛】本題考查了旋轉的性質:①對應點到旋轉中心的距離相等;②對應點與旋轉中心所連線段的夾角等于旋轉角;③旋轉前、后的圖形全等.同時也考查了等腰三角形的性質,三角形的內角和以及鄰補角的定義.18、或【分析】由二次函數(shù)y=ax2+bx+c(a≠0)過點(-1,-2),(0,-2),可求得此拋物線的對稱軸,又由此拋物線過點(1,0),即可求得此拋物線與x軸的另一個交點.繼而求得答案.【詳解】解:∵二次函數(shù)y=ax2+bx+c(a≠0)過點(-1,-2),(0,-2),∴此拋物線的對稱軸為:直線x=-,∵此拋物線過點(1,0),∴此拋物線與x軸的另一個交點為:(-2,0),∴ax2+bx+c=0的解為:x=-2或1.故答案為x=-2或1.【點睛】此題考查了拋物線與x軸的交點問題.此題難度適中,注意掌握二次函數(shù)的對稱性是解此題的關鍵.三、解答題(共66分)19、(1)y=x+1;y=(2)證明見解析;(3)存在,D(8,1).【分析】(1)由點A與點B關于y軸對稱,可得AO=BO,再由A的坐標求得B點的坐標,從而求得點P的坐標,將P坐標代入反比例解析式求出m的值,即可確定出反比例解析式,將A與P坐標代入一次函數(shù)解析式求出k與b的值,確定出一次函數(shù)解析式;(2)由AO=BO,PB∥CO,即可證得結論;(3)假設存在這樣的D點,使四邊形BCPD為菱形,過點C作CD平行于x軸,交PB于點E,交反比例函數(shù)y=的圖象于點D,分別連結PD、BD,如圖所示,即可得點D(8,1),BP⊥CD,易證PB與CD互相垂直平分,即可得四邊形BCPD為菱形,從而得點D的坐標.【詳解】解:(1)∵點A與點B關于y軸對稱,∴AO=BO,∵A(-4,0),∴B(4,0),∴P(4,2),把P(4,2)代入y=得m=8,∴反比例函數(shù)的解析式:y=把A(-4,0),P(4,2)代入y=kx+b得:,解得:,所以一次函數(shù)的解析式:y=x+1;(2)∵點A與點B關于y軸對稱,∴OA=OB∵PB丄x軸于點B,∴∠PBA=90°,∵∠COA=90°,∴PB∥CO,∴點C為線段AP的中點.(3)存在點D,使四邊形BCPD為菱形∵點C為線段AP的中點,∴BC=,∴BC和PC是菱形的兩條邊由y=x+1,可得點C(0,1),過點C作CD平行于x軸,交PB于點E,交反比例函數(shù)y=的圖象于點D,分別連結PD、BD,∴點D(8,1),BP⊥CD∴PE=BE=1,∴CE=DE=4,∴PB與CD互相垂直平分,∴四邊形BCPD為菱形.∴點D(8,1)即為所求.20、(1)補圖見解析;(2)90,直徑所對的圓周角是直角.【分析】(1)根據(jù)要求作出圖形即可.
(2)根據(jù)線段的垂直平分線的性質以及圓周角定理證明即可.【詳解】解:(1)如圖線段CM即為所求.
證明:連接DA,DC,EA,EC,∵由作圖可知DA=DC=EA=EC,∴DE是線段AC的垂直平分線.∴FA=FC.∴AC是⊙F的直徑.∴∠AMC==90°(直徑所對的圓周角是直角
),∴CM⊥AB.即CM就是AB邊上的高線.故答案為:90°,直徑所對的圓周角是直角.【點睛】本題考查作圖-復雜作圖,線段的垂直平分線的性質,圓周角定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.21、(1)BP=CE;CE⊥AD;(2)成立,理由見解析;(3).【解析】(1)①連接AC,證明△ABP≌△ACE,根據(jù)全等三角形的對應邊相等即可證得BP=CE;②根據(jù)菱形對角線平分對角可得,再根據(jù)△ABP≌△ACE,可得,繼而可推導得出,即可證得CE⊥AD;(2)(1)中的結論:BP=CE,CE⊥AD仍然成立,利用(1)的方法進行證明即可;(3)連接AC交BD于點O,CE,作EH⊥AP于H,由已知先求得BD=6,再利用勾股定理求出CE的長,AP長,由△APE是等邊三角形,求得,的長,再根據(jù),進行計算即可得.【詳解】(1)①BP=CE,理由如下:連接AC,∵菱形ABCD,∠ABC=60°,∴△ABC是等邊三角形,∴AB=AC,∠BAC=60°,∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE;②CE⊥AD,∵菱形對角線平分對角,∴,∵△ABP≌△ACE,∴,∵,∴,∴,∴,∴CF⊥AD,即CE⊥AD;(2)(1)中的結論:BP=CE,CE⊥AD仍然成立,理由如下:連接AC,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等邊三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE,,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD,∴(1)中的結論:BP=CE,CE⊥AD仍然成立;(3)連接AC交BD于點O,CE,作EH⊥AP于H,∵四邊形ABCD是菱形,∴AC⊥BD,BD平分∠ABC,∵∠ABC=60°,,∴∠ABO=30°,∴,BO=DO=3,∴BD=6,由(2)知CE⊥AD,∵AD∥BC,∴CE⊥BC,∵,,∴,由(2)知BP=CE=8,∴DP=2,∴OP=5,∴,∵△APE是等邊三角形,∴,,∵,∴,===,∴四邊形ADPE的面積是.【點睛】本題考查了菱形的性質,全等三角形的判定與性質,等邊三角形判定與性質等,熟練掌握相關知識,正確添加輔助線是解題的關鍵.22、(1)證明見解析(2)證明見解析(3)【分析】(1)根據(jù)直徑所對的圓周角為90°,得到∠ADC=90°,根據(jù)直角三角形兩銳角互余得到∠DAC+∠DCA=90°,再根據(jù)同弧或等弧所對的圓周角相等,可得到∠FAD+∠DAC=90°,即可得出結論;(2)連接OD.根據(jù)圓周角定理和角平分線定義可得∠DOA=∠DOC,即可得出結論;(3)連接OD交CF于M,作EP⊥AD于P.可求出AD=4,AF∥OM.根據(jù)三角形中位線定理得出OM=AF.證明△ODE≌△OCM,得到OE=OM.設OM=m,用m表示出OE,AE,AP,DP.通過證明△EAN∽△DPE,根據(jù)相似三角形對應邊成比例,求出m的值,從而求得AN,AE的值.在Rt△NAE中,由勾股定理即可得出結論.【詳解】(1)∵AC為⊙O的直徑,∴∠ADC=90°,∴∠DAC+∠DCA=90°.∵,∴∠ABD=∠DCA.∵∠FAD=∠ABD,∴∠FAD=∠DCA,∴∠FAD+∠DAC=90°,∴CA⊥AF,∴AF為⊙O的切線.(2)連接OD.∵,∴∠ABD=∠AOD.∵,∴∠DBC=∠DOC.∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠DOA=∠DOC,∴DA=DC.(3)連接OD交CF于M,作EP⊥AD于P.∵AC為⊙O的直徑,∴∠ADC=90°.∵DA=DC,∴DO⊥AC,∴∠FAC=∠DOC=90°,AD=DC==4,∴∠DAC=∠DCA=45°,AF∥OM.∵AO=OC,∴OM=AF.∵∠ODE+∠DEO=90°,∠OCM+∠DEO=90°,∴∠ODE=∠OCM.∵∠DOE=∠COM,OD=OC,∴△ODE≌△OCM,∴OE=OM.設OM=m,∴OE=m,,,∴.∵∠AED+∠AEN=135°,∠AED+∠ADE=135°,∴∠AEN=∠ADE.∵∠EAN=∠DPE,∴△EAN∽△DPE,∴,∴,∴,∴,,由勾股定理得:.【點睛】本題是圓的綜合題.考查了圓周角定理,切線的判定,相似三角形的判定與性質,三角形的中位線定理等知識.用含m的代數(shù)式表示出相關線段的長是解答本題的關鍵.23、(1)圖見解析;(2)1.【分析】(1)由垂徑定理知,垂直于弦的直徑是弦的中垂線,故作AC,BC的中垂線交于點O,則點O是弧ACB所在圓的圓心;(2)在Rt△OAD中,由勾股定理可求得半徑OA的長.【詳解】解:(1)作弦AC的垂直平分線與弦AB的垂直平分線交于O點,以O為圓心OA長為半徑作圓O就是此殘片所在的圓,如圖.(2)連接OA,設OA=x,AD=12cm,OD=(x-8)cm,則根據(jù)勾股定理列方程:x2=122+(x-8)2,解得:x=1.答:圓的半徑為1cm.24、(1)證明見解析;(2)△ABC的面積為.【分析】(1)計算判別式的值得到△=4m2,從而得到△>0,然后根據(jù)判別式的意義得到結論;(2)利用求根公式解方程得到x=4±m(xù),即b=4+m,c=4﹣m,討論:當b=a=6時,即4+m=6,解得m=2,利用勾股定理計算出底邊上的高,然后計算△ABC的面積;當c=a時,即4﹣
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 無錫蘇教版四年級數(shù)學下冊5《乘法分配律》聽評課記錄
- 構建科學合理的生態(tài)環(huán)境保護法律框架
- 五年級上冊數(shù)學聽評課記錄《7.1 誰先走》(2)-北師大版
- 2025年度建筑工人勞動保護用品及安全培訓合同
- 【基礎卷】同步分層練習:四年級下冊語文第28課《海的女兒》(含答案)
- 2025年度公共安全PPP項目合同模板
- 用戶體驗與界面設計在教育信息化中的角色
- 汽車行業(yè)的大數(shù)據(jù)營銷策略分析
- 【培優(yōu)卷】同步分層練習:五年級下冊語文第3課《月是故鄉(xiāng)明》(含答案)
- 人教版七年級地理上冊《第四章第一節(jié)人口與人種(第2課時)》聽課評課記錄
- 2025山東能源集團中級人才庫選拔高頻重點提升(共500題)附帶答案詳解
- 劉潤年度演講2024
- 燃氣經(jīng)營安全重大隱患判定標準課件
- 統(tǒng)編版語文八年級下冊全冊大單元整體教學設計表格式教案
- 普通沖床設備日常點檢標準作業(yè)指導書
- DB51∕T 2630-2019 珙桐扦插育苗技術規(guī)程
- 科技文獻檢索與利用PPT通用課件
- 《紅樓夢講稿》PPT課件
- DB33∕T 628.1-2021 交通建設工程工程量清單計價規(guī)范 第1部分:公路工程
- 吉祥喜金剛現(xiàn)證中品事業(yè)六支妙嚴(節(jié)錄)
- 國民中小學九年一貫課程綱要語文學習領域(國語文)
評論
0/150
提交評論