版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.實數(shù)﹣5.22的絕對值是()A.5.22 B.﹣5.22 C.±5.22 D.2.生物興趣小組的學生,將自己收集的標本向本組其他成員各贈送一件,全組共互贈了132件.如果全組共有x名同學,則根據(jù)題意列出的方程是()A.x(x+1)=132 B.x(x-1)=132 C.x(x+1)=132× D.x(x-1)=132×23.如圖,這是由5個大小相同的整體搭成的幾何體,該幾何體的左視圖是()A. B. C. D.4.氣象臺預報“本市明天下雨的概率是85%”,對此信息,下列說法正確的是()A.本市明天將有的地區(qū)下雨 B.本市明天將有的時間下雨C.本市明天下雨的可能性比較大 D.本市明天肯定下雨5.化簡的結(jié)果是()A. B. C. D.6.如圖,G,E分別是正方形ABCD的邊AB,BC上的點,且AG=CE,AE⊥EF,AE=EF,現(xiàn)有如下結(jié)論:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正確的結(jié)論有()A.4個 B.3個 C.2個 D.1個7.方程的解為()A.x=4 B.x=﹣3 C.x=6 D.此方程無解8.關于x的不等式x-b>0恰有兩個負整數(shù)解,則b的取值范圍是A. B. C. D.9.關于x的不等式組的所有整數(shù)解是()A.0,1 B.﹣1,0,1 C.0,1,2 D.﹣2,0,1,210.已知關于x的不等式3x﹣m+1>0的最小整數(shù)解為2,則實數(shù)m的取值范圍是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤711.將拋物線y=-2xA.y=-2(x+1)2C.y=-2(x-1)212.施工隊要鋪設1000米的管道,因在中考期間需停工2天,每天要比原計劃多施工30米才能按時完成任務.設原計劃每天施工x米,所列方程正確的是()A.=2 B.=2C.=2 D.=2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知二次函數(shù)的圖像與軸交點的橫坐標是和,且,則________.14.如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE折疊,使點B落在矩形內(nèi)點F處,連接CF,則CF的長度為_____15.如圖,小軍、小珠之間的距離為2.7m,他們在同一盞路燈下的影長分別為1.8m,1.5m,已知小軍、小珠的身高分別為1.8m,1.5m,則路燈的高為____m.16.如圖,已知△ABC中,∠ABC=50°,P為△ABC內(nèi)一點,過點P的直線MN分別交AB、BC于點M、N.若M在PA的中垂線上,N在PC的中垂線上,則∠APC的度數(shù)為_____17.如圖,在3×3的正方形網(wǎng)格中,點A,B,C,D,E,F(xiàn),G都是格點,從C,D,E,F(xiàn),G五個點中任意取一點,以所取點及AB為頂點畫三角形,所畫三角形時等腰三角形的概率是_____.18.把多項式x3﹣25x分解因式的結(jié)果是_____三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知點A、B分別是x軸、y軸上的動點,點C、D是某個函數(shù)圖象上的點,當四邊形ABCD(A、B、C、D各點依次排列)為正方形時,稱這個正方形為此函數(shù)圖象的伴侶正方形.如圖,正方形ABCD是一次函數(shù)y=x+1圖象的其中一個伴侶正方形.(1)若某函數(shù)是一次函數(shù)y=x+1,求它的圖象的所有伴侶正方形的邊長;(2)若某函數(shù)是反比例函數(shù)(k>0),它的圖象的伴侶正方形為ABCD,點D(2,m)(m<2)在反比例函數(shù)圖象上,求m的值及反比例函數(shù)解析式;(3)若某函數(shù)是二次函數(shù)y=ax2+c(a≠0),它的圖象的伴侶正方形為ABCD,C、D中的一個點坐標為(3,4).寫出伴侶正方形在拋物線上的另一個頂點坐標_____,寫出符合題意的其中一條拋物線解析式_____,并判斷你寫出的拋物線的伴侶正方形的個數(shù)是奇數(shù)還是偶數(shù)?_____.(本小題只需直接寫出答案)20.(6分)如圖,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圓⊙O上的一動點(點P與點C位于直線AB的異側(cè))連接AP、BP,延長AP到D,使PD=PB,連接BD.(1)求證:PC∥BD;(2)若⊙O的半徑為2,∠ABP=60°,求CP的長;(3)隨著點P的運動,的值是否會發(fā)生變化,若變化,請說明理由;若不變,請給出證明.21.(6分)先化簡,再求值:,其中a=+1.22.(8分)咸寧市某中學為了解本校學生對新聞、體育、動畫、娛樂四類電視節(jié)目的喜愛情況,隨機抽取了部分學生進行問卷調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下圖所示的兩幅不完整統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:=1\*GB2⑴補全條形統(tǒng)計圖,“體育”對應扇形的圓心角是度;=2\*GB2⑵根據(jù)以上統(tǒng)計分析,估計該校名學生中喜愛“娛樂”的有人;=3\*GB2⑶在此次問卷調(diào)查中,甲、乙兩班分別有人喜愛新聞節(jié)目,若從這人中隨機抽取人去參加“新聞小記者”培訓,請用列表法或者畫樹狀圖的方法求所抽取的人來自不同班級的概率23.(8分)某科技開發(fā)公司研制出一種新型產(chǎn)品,每件產(chǎn)品的成本為2500元,銷售單價定為3200元.在該產(chǎn)品的試銷期間,為了促銷,鼓勵商家購買該新型品,公司決定商家一次購買這種新型產(chǎn)品不超過10件時,每件按3200元銷售:若一次購買該種產(chǎn)品超過10件時,每多購買一件,所購買的全部產(chǎn)品的銷售單價均降低5元,但銷售單價均不低于2800元.商家一次購買這種產(chǎn)品多少件時,銷售單價恰好為2800元?設商家一次購買這種產(chǎn)品x件,開發(fā)公司所獲的利潤為y元,求y(元)與x(件)之間的函數(shù)關系式,并寫出自變量x的取值范圍該公司的銷售人員發(fā)現(xiàn):當商家一次購買產(chǎn)品的件數(shù)超過某一數(shù)量時,會出現(xiàn)隨著一次購買的數(shù)量的增多,公司所獲的利潤反而減少這一情況.為使商家一次購買的數(shù)量越多,公司所獲的利潤越大,公司應將最低銷售單價調(diào)整為多少元?(其它銷售條件不變)24.(10分)(1)計算:(﹣2)2﹣+(+1)2﹣4cos60°;(2)化簡:÷(1﹣)25.(10分)如圖,在邊長為1的小正方形組成的方格紙上,將△ABC繞著點A順時針旋轉(zhuǎn)90°畫出旋轉(zhuǎn)之后的△AB′C′;求線段AC旋轉(zhuǎn)過程中掃過的扇形的面積.26.(12分)已知關于x的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0有兩個不相等的實數(shù)根.求k的取值范圍;寫出一個滿足條件的k的值,并求此時方程的根.27.(12分)為迎接“全民閱讀日“系列活動,某校圍繞學生日人均閱讀時間這一問題,對八年級學生進行隨機抽樣調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計圖(不完整),請你根據(jù)圖中提供的信息解答下列問題:(1)本次共抽查了八年級學生多少人;(2)請直接將條形統(tǒng)計圖補充完整;(3)在扇形統(tǒng)計圖中,1?1.5小時對應的圓心角是多少度;(4)根據(jù)本次抽樣調(diào)查,估計全市50000名八年級學生日人均閱讀時間狀況,其中在0.5?1.5小時的有多少人?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
根據(jù)絕對值的性質(zhì)進行解答即可.【詳解】實數(shù)﹣5.1的絕對值是5.1.故選A.【點睛】本題考查的是實數(shù)的性質(zhì),熟知絕對值的性質(zhì)是解答此題的關鍵.2、B【解析】全組有x名同學,則每名同學所贈的標本為:(x-1)件,那么x名同學共贈:x(x-1)件,所以,x(x-1)=132,故選B.3、A【解析】
觀察所給的幾何體,根據(jù)三視圖的定義即可解答.【詳解】左視圖有2列,每列小正方形數(shù)目分別為2,1.故選A.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.4、C【解析】試題解析:根據(jù)概率表示某事情發(fā)生的可能性的大小,分析可得:A、明天降水的可能性為85%,并不是有85%的地區(qū)降水,錯誤;B、本市明天將有85%的時間降水,錯誤;C、明天降水的可能性為90%,說明明天降水的可能性比較大,正確;D、明天肯定下雨,錯誤.故選C.考點:概率的意義.5、D【解析】
將除法變?yōu)槌朔?,化簡二次根式,再用乘法分配律展開計算即可.【詳解】原式=×=×(+1)=2+.故選D.【點睛】本題主要考查二次根式的加減乘除混合運算,掌握二次根式的混合運算法則是解題關鍵.6、C【解析】
由∠BEG=45°知∠BEA>45°,結(jié)合∠AEF=90°得∠HEC<45°,據(jù)此知HC<EC,即可判斷①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根據(jù)SAS推出△GAE≌△CEF,即可判斷②;求出∠AGE=∠ECF=135°,即可判斷③;求出∠FEC<45°,根據(jù)相似三角形的判定得出△GBE和△ECH不相似,即可判斷④.【詳解】解:∵四邊形ABCD是正方形,∴AB=BC=CD,∵AG=GE,∴BG=BE,∴∠BEG=45°,∴∠BEA>45°,∵∠AEF=90°,∴∠HEC<45°,∴HC<EC,∴CD﹣CH>BC﹣CE,即DH>BE,故①錯誤;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF(SAS)),∴②正確;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正確;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④錯誤;故選:C.【點睛】本題考查了正方形的性質(zhì),等腰三角形的性質(zhì),全等三角形的性質(zhì)和判定,相似三角形的判定,勾股定理等知識點的綜合運用,綜合比較強,難度較大.7、C【解析】
先把分式方程化為整式方程,求出x的值,代入最簡公分母進行檢驗.【詳解】方程兩邊同時乘以x-2得到1-(x-2)=﹣3,解得x=6.將x=6代入x-2得6-2=4,∴x=6就是原方程的解.故選C【點睛】本題考查的是解分式方程,熟知解分式方程的基本步驟是解答此題的關鍵.8、A【解析】
根據(jù)題意可得不等式恰好有兩個負整數(shù)解,即-1和-2,再結(jié)合不等式計算即可.【詳解】根據(jù)x的不等式x-b>0恰有兩個負整數(shù)解,可得x的負整數(shù)解為-1和-2綜合上述可得故選A.【點睛】本題主要考查不等式的非整數(shù)解,關鍵在于非整數(shù)解的確定.9、B【解析】
分別求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集,據(jù)此即可得出答案.【詳解】解不等式﹣2x<4,得:x>﹣2,解不等式3x﹣5<1,得:x<2,則不等式組的解集為﹣2<x<2,所以不等式組的整數(shù)解為﹣1、0、1,故選:B.【點睛】考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.10、A【解析】
先解出不等式,然后根據(jù)最小整數(shù)解為2得出關于m的不等式組,解之即可求得m的取值范圍.【詳解】解:解不等式3x﹣m+1>0,得:x>,∵不等式有最小整數(shù)解2,∴1≤<2,解得:4≤m<7,故選A.【點睛】本題考查了一元一次不等式的整數(shù)解,解一元一次不等式組,正確解不等式,熟練掌握一元一次不等式、一元一次不等式組的解法是解答本題的關鍵.11、C【解析】試題分析:∵拋物線y=-2x2+1向右平移1個單位長度,∴平移后解析式為:y=-2考點:二次函數(shù)圖象與幾何變換.12、A【解析】分析:設原計劃每天施工x米,則實際每天施工(x+30)米,根據(jù):原計劃所用時間﹣實際所用時間=2,列出方程即可.詳解:設原計劃每天施工x米,則實際每天施工(x+30)米,根據(jù)題意,可列方程:=2,故選A.點睛:本題考查了由實際問題抽象出分式方程,關鍵是讀懂題意,找出合適的等量關系,列出方程.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、-12【解析】
令y=0,得方程,和即為方程的兩根,利用根與系數(shù)的關系求得和,利用完全平方式并結(jié)合即可求得k的值.【詳解】解:∵二次函數(shù)的圖像與軸交點的橫坐標是和,令y=0,得方程,則和即為方程的兩根,∴,,∵,兩邊平方得:,∴,即,解得:,故答案為:.【點睛】本題考查了一元二次方程與二次函數(shù)的關系,函數(shù)與x軸的交點的橫坐標就是方程的根,解題的關鍵是利用根與系數(shù)的關系,整體代入求解.14、【解析】
分析題意,如圖所示,連接BF,由翻折變換可知,BF⊥AE,BE=EF,由點E是BC的中點可知BE=3,根據(jù)勾股定理即可求得AE;根據(jù)三角形的面積公式可求得BH,進而可得到BF的長度;結(jié)合題意可知FE=BE=EC,進而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的長度即可【詳解】如圖,連接BF.∵△AEF是由△ABE沿AE折疊得到的,∴BF⊥AE,BE=EF.∵BC=6,點E為BC的中點,∴BE=EC=EF=3根據(jù)勾股定理有AE=AB+BE代入數(shù)據(jù)求得AE=5根據(jù)三角形的面積公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入數(shù)據(jù)求得CF=故答案為【點睛】此題考查矩形的性質(zhì)和折疊問題,解題關鍵在于利用好折疊的性質(zhì)15、3【解析】試題分析:如圖,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,即,解得:AB=3m,答:路燈的高為3m.考點:中心投影.16、115°【解析】
根據(jù)三角形的內(nèi)角和得到∠BAC+∠ACB=130°,根據(jù)線段的垂直平分線的性質(zhì)得到AM=PM,PN=CN,由等腰三角形的性質(zhì)得到∠MAP=∠APM,∠CPN=∠PCN,推出∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,于是得到結(jié)論.【詳解】∵∠ABC=50°,∴∠BAC+∠ACB=130°,∵若M在PA的中垂線上,N在PC的中垂線上,∴AM=PM,PN=CN,∴∠MAP=∠APM,∠CPN=∠PCN,∵∠APC=180°-∠APM-∠CPN=180°-∠PAC-∠ACP,∴∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,∴∠APC=115°,故答案為:115°【點睛】本題考查了線段的垂直平分線的性質(zhì),等腰三角形的性質(zhì),三角形的內(nèi)角和,熟練掌握線段的垂直平分線的性質(zhì)是解題的關鍵.17、.【解析】
找出從C,D,E,F(xiàn),G五個點中任意取一點組成等腰三角形的個數(shù),再根據(jù)概率公式即可得出結(jié)論.【詳解】∵從C,D,E,F(xiàn),G五個點中任意取一點共有5種情況,其中A、B、C;A、B、F兩種取法,可使這三定組成等腰三角形,∴所畫三角形時等腰三角形的概率是,故答案是:.【點睛】考查的是概率公式,熟記隨機事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)與所有可能出現(xiàn)的結(jié)果數(shù)的商是解答此題的關鍵.18、x(x+5)(x﹣5).【解析】分析:首先提取公因式x,再利用平方差公式分解因式即可.詳解:x3-25x=x(x2-25)=x(x+5)(x-5).故答案為x(x+5)(x-5).點睛:此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2);(3)(﹣1,3);(7,﹣3);(﹣4,7);(4,1),對應的拋物線分別為;;,偶數(shù).【解析】
(1)設正方形ABCD的邊長為a,當點A在x軸負半軸、點B在y軸正半軸上時,可知3a=,求出a,
(2)作DE、CF分別垂直于x、y軸,可知ADE≌△BAO≌△CBF,列出m的等式解出m,
(3)本問的拋物線解析式不止一個,求出其中一個.【詳解】解:(1)∵正方形ABCD是一次函數(shù)y=x+1圖象的其中一個伴侶正方形.當點A在x軸正半軸、點B在y軸負半軸上時,∴AO=1,BO=1,∴正方形ABCD的邊長為,當點A在x軸負半軸、點B在y軸正半軸上時,設正方形的邊長為a,得3a=,∴,所以伴侶正方形的邊長為或;(2)作DE、CF分別垂直于x、y軸,知△ADE≌△BAO≌△CBF,此時,m<2,DE=OA=BF=mOB=CF=AE=2﹣m∴OF=BF+OB=2∴C點坐標為(2﹣m,2),∴2m=2(2﹣m)解得m=1,反比例函數(shù)的解析式為y=,(3)根據(jù)題意畫出圖形,如圖所示:過C作CF⊥x軸,垂足為F,過D作DE⊥CF,垂足為E,∴△CED≌△DGB≌△AOB≌△AFC,∵C(3,4),即CF=4,OF=3,∴EG=3,DE=4,故DG=DE﹣GE=DE﹣OF=4﹣3=1,則D坐標為(﹣1,3);設過D與C的拋物線的解析式為:y=ax2+b,把D和C的坐標代入得:,解得,∴滿足題意的拋物線的解析式為y=x2+;同理可得D的坐標可以為:(7,﹣3);(﹣4,7);(4,1),;對應的拋物線分別為;;,所求的任何拋物線的伴侶正方形個數(shù)為偶數(shù).【點睛】本題考查了二次函數(shù)的綜合題.靈活運用相關知識是解題關鍵.20、(1)證明見解析;(2)+;(3)的值不變,.【解析】
(1)根據(jù)等腰三角形的性質(zhì)得到∠ABC=45°,∠ACB=90°,根據(jù)圓周角定理得到∠APB=90°,得到∠APC=∠D,根據(jù)平行線的判定定理證明;(2)作BH⊥CP,根據(jù)正弦、余弦的定義分別求出CH、PH,計算即可;(3)證明△CBP∽△ABD,根據(jù)相似三角形的性質(zhì)解答.【詳解】(1)證明:∵△ABC是等腰直角三角形,且AC=BC,∴∠ABC=45°,∠ACB=90°,∴∠APC=∠ABC=45°,∴AB為⊙O的直徑,∴∠APB=90°,∵PD=PB,∴∠PBD=∠D=45°,∴∠APC=∠D=45°,∴PC∥BD;(2)作BH⊥CP,垂足為H,∵⊙O的半徑為2,∠ABP=60°,∴BC=2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,在Rt△BCH中,CH=BC?cos∠BCH=,BH=BC?sin∠BCH=,在Rt△BHP中,PH=BH=,∴CP=CH+PH=+;(3)的值不變,∵∠BCP=∠BAP,∠CPB=∠D,∴△CBP∽△ABD,∴=,∴=,即=.【點睛】本題考查的是圓周角定理、相似三角形的判定和性質(zhì)以及銳角三角函數(shù)的概念,掌握圓周角定理、相似三角形的判定定理和性質(zhì)定理是解題的關鍵.21、【解析】
原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分得到最簡結(jié)果,把a的值代入計算即可求出值.【詳解】原式==,當a=+1時,原式=.【點睛】本題考查了分式的化簡求值,熟練掌握分式混合運算的運算順序以及運算法則是解題的關鍵.22、(1)72;(2)700;(3).【解析】試題分析:(1)根據(jù)動畫類人數(shù)及其百分比求得總?cè)藬?shù),總?cè)藬?shù)減去其他類型人數(shù)可得體育類人數(shù),用360度乘以體育類人數(shù)所占比例即可得;(2)用樣本估計總體的思想解決問題;(3)根據(jù)題意先畫出樹狀圖,得出所有情況數(shù),再根據(jù)概率公式即可得出答案.試題解析:(1)調(diào)查的學生總數(shù)為60÷30%=200(人),則體育類人數(shù)為200﹣(30+60+70)=40,補全條形圖如下:“體育”對應扇形的圓心角是360°×=72°;(2)估計該校2000名學生中喜愛“娛樂”的有:2000×=700(人),(3)將兩班報名的學生分別記為甲1、甲2、乙1、乙2,樹狀圖如圖所示:所以P(2名學生來自不同班)=.考點:扇形統(tǒng)計圖;條形統(tǒng)計圖;列表法與樹狀圖法;用樣本估計總體.23、(1)商家一次購買這種產(chǎn)品1件時,銷售單價恰好為2800元;(2)當0≤x≤10時,y=700x,當10<x≤1時,y=﹣5x2+750x,當x>1時,y=300x;(3)公司應將最低銷售單價調(diào)整為2875元.【解析】
(1)設件數(shù)為x,則銷售單價為3200-5(x-10)元,根據(jù)銷售單價恰好為2800元,列方程求解;(2)由利潤y=(銷售單價-成本單價)×件數(shù),及銷售單價均不低于2800元,按0≤x≤10,10<x≤50兩種情況列出函數(shù)關系式;(3)由(2)的函數(shù)關系式,利用二次函數(shù)的性質(zhì)求利潤的最大值,并求出最大值時x的值,確定銷售單價.【詳解】(1)設商家一次購買這種產(chǎn)品x件時,銷售單價恰好為2800元.由題意得:3200﹣5(x﹣10)=2800,解得:x=1.答:商家一次購買這種產(chǎn)品1件時,銷售單價恰好為2800元;(2)設商家一次購買這種產(chǎn)品x件,開發(fā)公司所獲的利潤為y元,由題意得:當0≤x≤10時,y=(3200﹣2500)x=700x,當10<x≤1時,y=[3200﹣5(x﹣10)﹣2500]?x=﹣5x2+750x,當x>1時,y=(2800﹣2500)?x=300x;(3)因為要滿足一次購買數(shù)量越多,所獲利潤越大,所以y隨x增大而增大,函數(shù)y=700x,y=300x均是y隨x增大而增大,而y=﹣5x2+750x=﹣5(x﹣75)2+28125,在10<x≤75時,y隨x增大而增大.由上述分析得x的取值范圍為:10<x≤75時,即一次購買75件時,恰好是最低價,最低價為3200﹣5?(75﹣10)=2875元,答:公司應將最低銷售單價調(diào)整為2875元.【點睛】本題考查了一次、二次函數(shù)的性質(zhì)在實際生活中的應用.最大銷售利潤的問題常利二次函數(shù)的增減性來解答,我們首先要吃透題意,確定變量,建立函數(shù)模型,然后結(jié)合實際選擇最優(yōu)方案.24、(1)5(2)【解析】
(1)根據(jù)實數(shù)的運算法則進行計算,要記住特殊銳角三角函數(shù)值;(2)根據(jù)分式的混合運算法則進行計算.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版泥漿外運承包合同(含應急處理預案)4篇
- 二零二五版拌合料生產(chǎn)技術標準制定與執(zhí)行合同4篇
- 二零二五年度智能建筑暖通設備采購合同4篇
- 二零二五版門閘安全標準認證服務合同4篇
- 二零二五年度網(wǎng)絡安全年薪制勞動合同4篇
- 二零二五年度沖擊錘施工材料質(zhì)量檢測合同2篇
- 二零二五年度租賃市場合同糾紛解決策略4篇
- 二零二五年度城市更新改造項目規(guī)劃合同4篇
- 二零二五年度農(nóng)業(yè)電商數(shù)據(jù)安全與隱私保護合同樣本3篇
- 2025年度二零二五年度獼猴桃出口貿(mào)易代理合同3篇
- 2024年供應鏈安全培訓:深入剖析與應用
- 飛鼠養(yǎng)殖技術指導
- 壞死性筋膜炎
- 整式的加減單元測試題6套
- 股權架構完整
- 山東省泰安市2022年初中學業(yè)水平考試生物試題
- 注塑部質(zhì)量控制標準全套
- 人教A版高中數(shù)學選擇性必修第一冊第二章直線和圓的方程-經(jīng)典例題及配套練習題含答案解析
- 銀行網(wǎng)點服務禮儀標準培訓課件
- 二年級下冊數(shù)學教案 -《數(shù)一數(shù)(二)》 北師大版
- 晶體三極管資料
評論
0/150
提交評論