版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年江西省景德鎮(zhèn)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.
B.
C.
D.
3.
4.收入預(yù)算的主要內(nèi)容是()
A.銷售預(yù)算B.成本預(yù)算C.生產(chǎn)預(yù)算D.現(xiàn)金預(yù)算
5.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
6.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx
7.設(shè)f(x)在點(diǎn)x0處取得極值,則()
A.f"(x0)不存在或f"(x0)=0
B.f"(x0)必定不存在
C.f"(x0)必定存在且f"(x0)=0
D.f"(x0)必定存在,不一定為零
8.設(shè)f(x)為連續(xù)函數(shù),則(∫f5x)dx)'等于()A.A.
B.5f(x)
C.f(5x)
D.5f(5x)
9.設(shè)球面方程為(x-1)2+(y+2)2+(z-3)2=4,則該球的球心坐標(biāo)與半徑分別為()A.(-1,2,-3);2B.(-1,2,-3);4C.(1,-2,3);2D.(1,-2,3);4
10.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)
B.xy2cos(xy2)
C.2xyeos(xy2)
D.y2cos(xy2)
11.下列等式成立的是
A.A.
B.B.
C.C.
D.D.
12.下列命題中正確的有().
13.
14.
15.
16.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)17.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo),f'(x)>0,則在(0,1)內(nèi)f(x)().A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量
18.
A.
B.
C.
D.
19.A.A.
B.
C.
D.
20.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)()A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)二、填空題(20題)21.22.
23.
24.
25.
26.將積分改變積分順序,則I=______.
27.
28.
29.30.31.32.33.函數(shù)y=x3-2x+1在區(qū)間[1,2]上的最小值為______.34.設(shè)z=x2y2+3x,則
35.
36.
37.
38.
39.
40.
三、計(jì)算題(20題)41.求微分方程y"-4y'+4y=e-2x的通解.
42.43.
44.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).45.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
46.求微分方程的通解.47.
48.
49.
50.
51.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.52.求曲線在點(diǎn)(1,3)處的切線方程.53.54.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.55.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.56.將f(x)=e-2X展開為x的冪級(jí)數(shù).
57.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
58.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則59.證明:60.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.四、解答題(10題)61.(本題滿分10分)
62.
63.設(shè)有一圓形薄片x2+y2≤α2,在其上一點(diǎn)M(x,y)的面密度與點(diǎn)M到點(diǎn)(0,0)的距離成正比,求分布在此薄片上的物質(zhì)的質(zhì)量。
64.求由曲線y=x,y=lnx及y=0,y=1圍成的平面圖形的面積S及此平面圖形繞y軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體體積.65.設(shè)函數(shù)y=sin(2x-1),求y'。
66.
67.
68.設(shè)y=(1/x)+ln(1+x),求y'。
69.
70.
五、高等數(shù)學(xué)(0題)71.
六、解答題(0題)72.
參考答案
1.A
2.C
3.B
4.A解析:收入預(yù)算的主要內(nèi)容是銷售預(yù)算。
5.D由拉格朗日定理
6.B
7.A若點(diǎn)x0為f(x)的極值點(diǎn),可能為兩種情形之一:(1)若f(x)在點(diǎn)x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點(diǎn)x=0處取得極小值,但f(x)=|x|在點(diǎn)x=0處不可導(dǎo),這表明在極值點(diǎn)處,函數(shù)可能不可導(dǎo)。故選A。
8.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì).
(∫f5x)dx)'為將f(5x)先對(duì)x積分,后對(duì)x求導(dǎo).若設(shè)g(x)=f(5x),則(∫f5x)dx)'=(∫g(x)dx)'表示先將g(x)對(duì)x積分,后對(duì)x求導(dǎo),因此(∫f(5x)dx)'=(∫g(x)dx)'=g(x)=f(5x).
可知應(yīng)選C.
9.C
10.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。
11.C本題考查了函數(shù)的極限的知識(shí)點(diǎn)
12.B解析:
13.B
14.A
15.A
16.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。
17.A由于f(x)在(0,1)內(nèi)有f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.
18.C
19.D
20.B由于f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加.因此選B.21.e.
本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.
22.e2
23.x=-3
24.
25.2cos(x2+y2)(xdx+ydy)2cos(x2+y2)(xdx+ydy)解析:
26.
27.
28.
29.30.e-1/231.本題考查的知識(shí)點(diǎn)為重要極限公式。
32.In233.0本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最小值問題.
通常求解的思路為:
先求出連續(xù)函數(shù)f(x)在(a,b)內(nèi)的所有駐點(diǎn)x1,…,xk.
比較f(x1),f(x2),…,f(xk),f(a),f(b),其中最大(小)值即為f(x)在[a,b]上的最大(小)值,相應(yīng)的x即為,(x)在[a,b]上的最大(小)值點(diǎn).
由y=x3-2x+1,可得
Y'=3x2-2.
令y'=0得y的駐點(diǎn)為,所給駐點(diǎn)皆不在區(qū)間(1,2)內(nèi),且當(dāng)x∈(1,2)時(shí)有
Y'=3x2-2>0.
可知y=x3-2x+1在[1,2]上為單調(diào)增加函數(shù),最小值點(diǎn)為x=1,最小值為f(1)=0.
注:也可以比較f(1),f(2)直接得出其中最小者,即為f(x)在[1,2]上的最小值.
本題中常見的錯(cuò)誤是,得到駐點(diǎn)和之后,不討論它們是否在區(qū)間(1,2)內(nèi).而是錯(cuò)誤地比較
從中確定f(x)在[1,2]上的最小值.則會(huì)得到錯(cuò)誤結(jié)論.34.2xy(x+y)+3本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).
由于z=x2y2+3x,可知
35.
解析:
36.2
37.38.
39.
40.(1/3)ln3x+C
41.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
42.
43.
則
44.
列表:
說明
45.
46.47.由一階線性微分方程通解公式有
48.
49.
50.
51.
52.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
53.
54.由二重積分物理意義知
55.函數(shù)的定義域?yàn)?/p>
注意
56.
57.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 四川電影電視學(xué)院《非法干擾、擾亂行為》2021-2022學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《影視作品賞析》2022-2023學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《歌曲與旋律寫作常識(shí)(1)》2023-2024學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《版畫》2021-2022學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《數(shù)據(jù)結(jié)構(gòu)》2022-2023學(xué)年期末試卷
- 沈陽理工大學(xué)《科技文獻(xiàn)檢索》2023-2024學(xué)年第一學(xué)期期末試卷
- 大學(xué)校醫(yī)院工作總結(jié)
- 沈陽理工大學(xué)《化工原理》2021-2022學(xué)年第一學(xué)期期末試卷
- 規(guī)范合同管理流程的通知
- 合肥住房租賃合同
- 勞動(dòng)技術(shù)教案
- 廣東省深圳市2023-2024學(xué)年高一上學(xué)期生物期中試卷(含答案)
- 第七章 立體幾何與空間向量綜合測(cè)試卷(新高考專用)(學(xué)生版) 2025年高考數(shù)學(xué)一輪復(fù)習(xí)專練(新高考專用)
- 2024年浙江省衢州市營(yíng)商環(huán)境建設(shè)辦公室招聘政府雇員17人高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 福建省殘疾人崗位精英職業(yè)技能競(jìng)賽(美甲師)參考試題及答案
- 在線學(xué)習(xí)新變革課件 2024-2025學(xué)年人教版(2024)初中信息技術(shù)七年級(jí)全一冊(cè)
- 航空器系統(tǒng)與動(dòng)力裝置學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 教育家精神引領(lǐng)師范生高質(zhì)量培養(yǎng)的路徑探析
- 2023年新人教版小學(xué)數(shù)學(xué)六年級(jí)上冊(cè)全冊(cè)教案
- 2024年中國(guó)汽車噴漆烤房市場(chǎng)調(diào)查研究報(bào)告
- 年生產(chǎn)10000噸鵪鶉養(yǎng)殖基地項(xiàng)目可行性研究報(bào)告寫作模板-備案審批
評(píng)論
0/150
提交評(píng)論