2022-2023學年浙江省寧波市普通高校對口單招數(shù)學自考測試卷(含答案)_第1頁
2022-2023學年浙江省寧波市普通高校對口單招數(shù)學自考測試卷(含答案)_第2頁
2022-2023學年浙江省寧波市普通高校對口單招數(shù)學自考測試卷(含答案)_第3頁
2022-2023學年浙江省寧波市普通高校對口單招數(shù)學自考測試卷(含答案)_第4頁
2022-2023學年浙江省寧波市普通高校對口單招數(shù)學自考測試卷(含答案)_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年浙江省寧波市普通高校對口單招數(shù)學自考測試卷(含答案)學校:________班級:________姓名:________考號:________

一、單選題(10題)1.A.

B.

C.

2.已知函數(shù)f(x)=sin(2x+3π/2)(x∈R),下面結論錯誤的是()A.函數(shù)f(x)的最小正周期為π

B.函數(shù)f(x)是偶函數(shù)

C.函數(shù)f(x)是圖象關于直線x=π/4對稱

D.函數(shù)f(x)在區(qū)間[0,π/2]上是增函數(shù)

3.A.(6,7)B.(2,-1)C.(-2,1)D.(7,6)

4.函數(shù)y=log2x的圖象大致是()A.

B.

C.

D.

5.設集合M={1,2,4,5,6},集合N={2,4,6},則M∩N=()A.{2,4,5,6}B.{4,5,6}C.{1,2,3,4,5,6}D.{2,4,6}

6.橢圓9x2+16y2=144短軸長等于()A.3B.4C.6D.8

7.已知集合A={1,2,3,4,5,6,7},B={3,4,5},那么=()A.{6,7}B.{1,2,6,7}C.{3,4,5}D.{1,2}

8.(1-x)4的展開式中,x2的系數(shù)是()A.6B.-6C.4D.-4

9.已知點A(1,-3)B(-1,3),則直線AB的斜率是()A.

B.-3

C.

D.3

10.設集合A={x|1≤x≤5},Z為整數(shù)集,則集合A∩Z中元素的個數(shù)是()A.6B.5C.4D.3

二、填空題(10題)11.在P(a,3)到直線4x-3y+1=0的距離是4,則a=_____.

12.某機電班共有50名學生,任選一人是男生的概率為0.4,則這個班的男生共有

名。

13.

14.等差數(shù)列的前n項和_____.

15.在△ABC中,C=60°,AB=,BC=,那么A=____.

16.己知三個數(shù)成等差數(shù)列,他們的和為18,平方和是116,則這三個數(shù)從小到大依次是_____.

17.

18.

19.已知那么m=_____.

20.sin75°·sin375°=_____.

三、計算題(5題)21.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。

22.已知函數(shù)f(x)的定義域為{x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.

23.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

24.解不等式4<|1-3x|<7

25.有四個數(shù),前三個數(shù)成等差數(shù)列,公差為10,后三個數(shù)成等比數(shù)列,公比為3,求這四個數(shù).

四、簡答題(10題)26.化簡a2sin(-1350°)+b2tan405°-(a-b)2cot765°-2abcos(-1080°)

27.解不等式組

28.如圖四面體ABCD中,AB丄平面BCD,BD丄CD.求證:(1)平面ABD丄平面ACD;(2)若AB=BC=2BD,求二面角B-AC-D的正弦值.

29.已知等差數(shù)列的前n項和是求:(1)通項公式(2)a1+a3+a5+…+a25的值

30.已知橢圓和直線,求當m取何值時,橢圓與直線分別相交、相切、相離。

31.數(shù)列的前n項和Sn,且求(1)a2,a3,a4的值及數(shù)列的通項公式(2)a2+a4+a6++a2n的值

32.已知平行四邊形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中點,求。

33.設等差數(shù)列的前n項數(shù)和為Sn,已知的通項公式及它的前n項和Tn.

34.已知雙曲線C:的右焦點為,且點到C的一條漸近線的距離為.(1)求雙曲線C的標準方程;(2)設P為雙曲線C上一點,若|PF1|=,求點P到C的左焦點的距離.

35.已知a是第二象限內(nèi)的角,簡化

五、解答題(10題)36.已知橢圓C:x2/a2+y2/b2=1(a>b>0)的兩焦點分別F1,F2點P在橢圓C上,且∠PF2F1=90°,|PF1|=6,|PF2|=2.(1)求橢圓C的方程;(2)是否存在直線L與橢圓C相交于A、B兩點,且使線段AB的中點恰為圓M:x2+y2+4x-2y=0的圓心,如果存在,求直線l的方程;如果不存在,請說明理由.

37.已知函數(shù)f(x)=x3-3x2-9x+1.(1)求函數(shù)f(x)的單調(diào)區(qū)間.(2)若f(x)-2a+1≥0對Vx∈[-2,4]恒成立,求實數(shù)a的取值范圍.

38.已知A,B分別是橢圓的左右兩個焦點,o為坐標的原點,點P(-1,)在橢圓上,線段PB與y軸的焦點M為線段PB的中心點,求橢圓的標準方程

39.某化工廠生產(chǎn)的某種化工產(chǎn)品,當年產(chǎn)量在150噸至250噸之內(nèi),其年生產(chǎn)的總成本:y(萬元)與年產(chǎn)量x(噸)之間的關系可近似地表示為y=x2/10-30x+400030x+4000.(1)當年產(chǎn)量為多少噸時,每噸的平均成本最低,并求每噸最低平均成本;(2)若每噸平均出廠價為16萬元,求年生產(chǎn)多少噸時,可獲得最大的年利潤,并求最大年利潤.

40.

41.已知數(shù)列{an}是公差不為0的等差數(shù)列a1=2,且a2,a3,a4+1成等比數(shù)列.(1)求數(shù)列{an}的通項公式;(2)設bn=2/n(an+2),求數(shù)列{bn}的前n項和Sn.

42.

43.已知數(shù)列{an}是的通項公式為an=en(e為自然對數(shù)的底數(shù));(1)證明數(shù)列{an}為等比數(shù)列;(2)若bn=Inan,求數(shù)列{1/bnbn+1}的前n項和Tn.

44.如圖,AB是⊙O的直徑,P是⊙O所在平面外一點,PA垂直于⊙O所在的平面,且PA=AB=10,設點C為⊙O上異于A,B的任意一點.(1)求證:BC⊥平面PAC;(2)若AC=6,求三棱錐C-PAB的體積.

45.已知函數(shù)f(x)=log21+x/1-x.(1)求f(x)的定義域;(2)討論f(x)的奇偶性;(3)用定義討論f(x)的單調(diào)性.

六、單選題(0題)46.橢圓x2/16+y2/9的焦點坐標為()A.(,0)(-,0)

B.(4,0)(-4,0)

C.(3,0)(-3,0)

D.(7,0)(-7,0)

參考答案

1.C

2.C三角函數(shù)的性質(zhì).f(x)=sin(2x+3π/2)=-cos2x,故其最小正周期為π,故A正確;易知函數(shù)f(x)是偶函數(shù),B正確;由函數(shù)f(x)=-cos2x的圖象可知,函數(shù)f(x)的圖象關于直線x=π/4不對稱,C錯誤;由函數(shù)f(x)的圖象易知,函數(shù)f(x)在[0,π/2]上是增函數(shù),D正確,

3.A

4.C對數(shù)函數(shù)的圖象和基本性質(zhì).

5.D集合的計算∵M={1,2,3,4,5,6},N={2,4,6},∴M∩N={2,4,6}

6.C

7.B由題可知AB={3,4,5},所以其補集為{1,2,6,7}。

8.A

9.B

10.B集合的運算.∵A={x|1≤x≤5},Z為整數(shù)集,則A∩Z={1,2,3,4,5}.

11.-3或7,

12.20男生人數(shù)為0.4×50=20人

13.0.4

14.2n,

15.45°.解三角形的正弦定理.由正弦定理知BC/sinA=AB/sinC,即/sinA=/sin60°所以sinA=/2,又由題知BC<AB,得A<C,所以A=45°.

16.4、6、8

17.π/4

18.16

19.6,

20.

,

21.

22.

23.

24.

25.

26.原式=

27.x2-6x+8>0,∴x>4,x<2(1)(2)聯(lián)系(1)(2)得不等式組的解集為

28.

29.

30.∵∴當△>0時,即,相交當△=0時,即,相切當△<0時,即,相離

31.

32.平行四邊形ABCD,CD為AB平移所得,從B點開始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中點,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。

33.(1)∵

∴又∵等差數(shù)列∴∴(2)

34.(1)∵雙曲線C的右焦點為F1(2,0),∴c=2又點F1到C1的一條漸近線的距離為,∴,即以解得b=

35.

36.

37.

38.點M是線段PB的中點又∵OM丄AB,∴PA丄AB則c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此橢圓的標準方程為

39.(1)設每噸的平均成本為W(萬元/噸),ω=y/x=x/10+4000/x-30≥-30=10,當且僅當x/10=4000/x,x=200噸時每噸成本最低為10萬元.(2)設年利潤為u萬元u=16x-(x2/10-30x+4000)=-x2/10+46x-4000=-1/10(x-230)2+1290,當x=230時,umax=1290,故當年產(chǎn)量為230噸時,最大年利潤為1290萬元.

40.

41.(1)設數(shù)列{an}的公差為d,由a1=2和a2,a3,a4+1成等比數(shù)列,得(2+2d)2=(2+d).(3+3d),解得d=2,或d=-1,當d=-1時a3=0與a2,a3,a4+1成等比數(shù)列矛盾,舍去.所以d=2,所以an=a1+(n-1)d=2+2(n-1)=2n即數(shù)列{an}的通項公式an=2n.

42.

43.

44.(1)∵PA垂直于⊙O所在的平面,BC包含于⊙O所在的平面,∴PA⊥BC,又∵AB為⊙O的直徑,C為⊙O上異于A、B的-點,AC⊥BC,且PA∩AC=A,∴BC⊥平面PAC.(2)由(1)知△ABC為直角三角形且∠ACB=90°,又AC=6,AB=10,∴又∵PA=10,PA⊥AC,∴S△PAC=1/2PA.AC=1/2×10×6=30.∴VC-PAB=1/3×SPAC×BC=1/3×30×8=80

45.(1)要使函數(shù)f(x)=㏒21+x/1-x有意義,則須1+x/1-x>0解得-1<x<1,所以f(x)的定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論