版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
WORD(可編輯版本)———山東濟寧市中考數(shù)學(xué)考點解析基礎(chǔ)數(shù)學(xué)的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內(nèi)的古代數(shù)學(xué)文本內(nèi)便可觀見。今天我在這給大家整理了一些山東濟寧市中考數(shù)學(xué)考點解析,我們一起來看看吧!
山東濟寧市中考數(shù)學(xué)考點解析
知識點1:一元二次方程的基本概念
1.一元二次方程3x2+5x-2=0的常數(shù)項是-2.
2.一元二次方程3x2+4x-2=0的一次項系數(shù)為4,常數(shù)項是-2.
3.一元二次方程3x2-5x-7=0的二次項系數(shù)為3,常數(shù)項是-7.
4.把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0.
知識點2:直角坐標系與點的位置
1.直角坐標系中,點A(3,0)在y軸上。
2.直角坐標系中,x軸上的任意點的橫坐標為0.
3.直角坐標系中,點A(1,1)在第一象限。
4.直角坐標系中,點A(-2,3)在第四象限。
5.直角坐標系中,點A(-2,1)在第二象限。
知識點3:已知自變量的值求函數(shù)值
1.當x=2時,函數(shù)y=的值為1.
2.當x=3時,函數(shù)y=的值為1.
3.當x=-1時,函數(shù)y=的值為1.
知識點4:基本函數(shù)的概念及性質(zhì)
1.函數(shù)y=-8x是一次函數(shù)。
2.函數(shù)y=4x+1是正比例函數(shù)。
3.函數(shù)是反比例函數(shù)。
4.拋物線y=-3(x-2)2-5的開口向下。
5.拋物線y=4(x-3)2-10的對稱軸是x=3.
6.拋物線的頂點坐標是(1,2)。
7.反比例函數(shù)的圖象在第一、三象限。
知識點5:數(shù)據(jù)的平均數(shù)中位數(shù)與眾數(shù)
1.數(shù)據(jù)13,10,12,8,7的平均數(shù)是10.
2.數(shù)據(jù)3,4,2,4,4的眾數(shù)是4.
3.數(shù)據(jù)1,2,3,4,5的中位數(shù)是3.
知識點6:特殊三角函數(shù)值
1.cos30°=根號3/2。
2.sin260°+cos260°=1.
3.2sin30°+tan45°=2.
4.tan45°=1.
5.cos60°+sin30°=1.
知識點7:圓的基本性質(zhì)
1.半圓或直徑所對的圓周角是直角。
2.任意一個三角形一定有一個外接圓。
3.在同一平面內(nèi),到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
4.在同圓或等圓中,相等的圓心角所對的弧相等。
5.同弧所對的圓周角等于圓心角的一半。
6.同圓或等圓的半徑相等。
7.過三個點一定可以作一個圓。
8.長度相等的兩條弧是等弧。
9.在同圓或等圓中,相等的圓心角所對的弧相等。
10.經(jīng)過圓心平分弦的直徑垂直于弦。
知識點8:直線與圓的位置關(guān)系
1.直線與圓有公共點時,叫做直線與圓相切。
2.三角形的外接圓的圓心叫做三角形的外心。
3.弦切角等于所夾的弧所對的圓心角。
4.三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心。
5.垂直于半徑的直線必為圓的切線。
6.過半徑的外端點并且垂直于半徑的直線是圓的切線。
7.垂直于半徑的直線是圓的切線。
8.圓的切線垂直于過切點的半徑。
中考數(shù)學(xué)考點解析
1.數(shù)軸
(1)數(shù)軸的概念:規(guī)定了原點、正方向、單位長度的直線叫做數(shù)軸.
數(shù)軸的三要素:原點,單位長度,正方向。
(2)數(shù)軸上的點:所有的有理數(shù)都可以用數(shù)軸上的點表示,但數(shù)軸上的點不都表示有理數(shù).(一般取右方向為正方向,數(shù)軸上的點對應(yīng)任意實數(shù),包括無理數(shù).)
(3)用數(shù)軸比較大?。阂话銇碚f,當數(shù)軸方向朝右時,右邊的數(shù)總比左邊的數(shù)大。
重點知識:
初中數(shù)學(xué)第一課,認識正數(shù)與負數(shù)!新初一的來~
2.相反數(shù)
(1)相反數(shù)的概念:只有符號不同的兩個數(shù)叫做互為相反數(shù).
(2)相反數(shù)的意義:精通相反數(shù)是成對出現(xiàn)的,不能單獨存在,從數(shù)軸上看,除0外,互為相反數(shù)的兩個數(shù),它們分別在原點兩旁且到原點距離相等。
(3)多重符號的化簡:與“+”個數(shù)無關(guān),有奇數(shù)個“﹣”號結(jié)果為負,有偶數(shù)個“﹣”號,結(jié)果為正。
(4)規(guī)律方法總結(jié):求一個數(shù)的相反數(shù)的方法就是在這個數(shù)的前邊添加“﹣”,如a的相反數(shù)是﹣a,m+n的相反數(shù)是﹣(m+n),這時m+n是一個整體,在整體前面添負號時,要用小括號。
3.肯定值
1.概念:數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的肯定值。
①互為相反數(shù)的兩個數(shù)肯定值相等;
②肯定值等于一個正數(shù)的數(shù)有兩個,肯定值等于0的數(shù)有一個,沒有肯定值等于負數(shù)的數(shù).
③有理數(shù)的肯定值都是非負數(shù).
2.如果用字母a表示有理數(shù),則數(shù)a肯定值要由字母a本身的取值來確定:
①當a是正有理數(shù)時,a的肯定值是它本身a;
②當a是負有理數(shù)時,a的肯定值是它的相反數(shù)﹣a;
③當a是零時,a的肯定值是零.
即|a|={a(a0)0(a=0)﹣a(a0)
重點知識:
4.有理數(shù)大小比較
1.有理數(shù)的大小比較
比較有理數(shù)的大小可以利用數(shù)軸,他們從左到有的順序,即從大到小的順序(在數(shù)軸上表示的兩個有理數(shù),右邊的數(shù)總比左邊的數(shù)大);也可以利用數(shù)的性質(zhì)比較異號兩數(shù)及0的大小,利用肯定值比較兩個負數(shù)的大小。
2.有理數(shù)大小比較的法則:
①正數(shù)都大于0;
②負數(shù)都小于0;
③正數(shù)大于一切負數(shù);
④兩個負數(shù),肯定值大的其值反而小。
規(guī)律方法·有理數(shù)大小比較的三種方法:
(1)法則比較:正數(shù)都大于0,負數(shù)都小于0,正數(shù)大于一切負數(shù).兩個負數(shù)比較大小,肯定值大的反而小.
(2)數(shù)軸比較:在數(shù)軸上右邊的點表示的數(shù)大于左邊的點表示的數(shù).
(3)作差比較:
若a﹣b0,則ab;
若a﹣b0,則ab;p=
若a﹣b=0,則a=b.
5.有理數(shù)的減法
有理數(shù)減法法則
減去一個數(shù),等于加上這個數(shù)的相反數(shù)。即:a﹣b=a+(﹣b)
方法指引:
①在進行減法運算時,首先弄清減數(shù)的符號;
②將有理數(shù)轉(zhuǎn)化為加法時,要同時改變兩個符號:一是運算符號(減號變加號);二是減數(shù)的性質(zhì)符號(減數(shù)變相反數(shù));
注意:在有理數(shù)減法運算時,被減數(shù)與減數(shù)的位置不能隨便交換;因為減法沒有交換律。
減法法則不能與加法法則類比,0加任何數(shù)都不變,0減任何數(shù)應(yīng)依法則進行計算。
6.有理數(shù)的乘法
(1)有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把肯定值相乘。
(2)任何數(shù)同零相乘,都得0。
(3)多個有理數(shù)相乘的法則:
①幾個不等于0的數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有奇數(shù)個時,積為負;當負因數(shù)有偶數(shù)個時,積為正.
②幾個數(shù)相乘,有一個因數(shù)為0,積就為0。
(4)方法指引
①運用乘法法則,先確定符號,再把肯定值相乘.
②多個因數(shù)相乘,看0因數(shù)和積的符號當先,這樣做使運算既準確又簡易.
7.有理數(shù)的混合運算
1.有理數(shù)混合運算順序:先算乘方,再算乘除,最后算加減;同級運算,應(yīng)按從左到右的順序進行計算;如果有括號,要先做括號內(nèi)的運算。
2.進行有理數(shù)的混合運算時,注意各個運算律的運用,使運算過程得到簡化。
有理數(shù)混合運算的四種運算技巧:
(1)轉(zhuǎn)化法:一是將除法轉(zhuǎn)化為乘法,二是將乘方轉(zhuǎn)化為乘法,三是在乘除混合運算中,通常將小數(shù)轉(zhuǎn)化為分數(shù)進行約分計算.
(2)湊整法:在加減混合運算中,通常將和為零的兩個數(shù),分母相同的兩個數(shù),和為整數(shù)的兩個數(shù),乘積為整數(shù)的兩個數(shù)分別結(jié)合為一組求解.
(3)分拆法:先將帶分數(shù)分拆成一個整數(shù)與一個真分數(shù)的和的形式,然后進行計算.
(4)巧用運算律:在計算中巧妙運用加法運算律或乘法運算律往往使計算更簡便.
中考數(shù)學(xué)考點
1.等式的性質(zhì)
1.等式的性質(zhì)
性質(zhì)1等式兩邊加同一個數(shù)(或式子)結(jié)果仍得等式;
性質(zhì)2等式兩邊乘同一個數(shù)或除以一個不為零的數(shù),結(jié)果仍得等式。
2.利用等式的性質(zhì)解方程
利用等式的性質(zhì)對方程進行變形,使方程的形式向x=a的形式轉(zhuǎn)化.
應(yīng)用時要注意把握兩關(guān):
①怎樣變形;
②依據(jù)哪一條,變形時只有做到步步有據(jù),才能保證是正確的.
新初一第二章知識點總結(jié):整式的加減,為孩子保藏!
2.一元一次方程的解
定義:使一元一次方程左右兩邊相等的未知數(shù)的值叫做一元一次方程的解。
把方程的解代入原方程,等式左右兩邊相等。
3.解一元一次方程
1.解一元一次方程的一般步驟
去分母、去括號、移項、合并同類項、系數(shù)化為1,這僅是解一元一次方程的一般步驟,針對方程的特點,靈活應(yīng)用,各種步驟都是為使方程漸漸向x=a形式轉(zhuǎn)化。
2.解一元一次方程時先觀察方程的形式和特點,若有分母一般先去分母;若既有分母又有括號,且括號外的項在乘括號內(nèi)各項后能消去分母,就先去括號。
3.在解類似于“ax+bx=c”的方程時,將方程左邊,按合并同類項的方法并為一項即(a+b)x=c。
使方程漸漸轉(zhuǎn)化為ax=b的最簡形式體現(xiàn)化歸思想。
將ax=b系數(shù)化為1時,要準確計算,一弄清求x時,方程兩邊除以的是a還是b,尤其a為分數(shù)時;二要準確判斷符號,a、b同號x為正,a、b異號x為負。
4.一元一次方程的應(yīng)用
1.一元一次方程解應(yīng)用題的類型
(1)探索規(guī)律型問題;
(2)數(shù)字問題;
(3)銷售問題(利潤=售價﹣進價,利潤率=利潤進價×100%);
(4)工程問題(①工作量=人均效率×人數(shù)×?xí)r間;②如果一件工作分幾個階段完成,那么各階段的工作量的和=工作總量);
(5)行程問題(路程=速度×?xí)r間);
(6)等值變換問題;
(7)和,差,倍,分問題;
(8)分配問題;
(9)比賽積分問題;
(10)水流航行問題(順水速度=靜水速度+水流速度;逆水速度=靜水速度﹣水流速度).
2.利用方程解決實際問題的基本思路
首先審題找出題中的未知量和所有的已知量,直接設(shè)要求的未知量或間接設(shè)一關(guān)鍵的未知量為x,然后用含x的式子表示相關(guān)的量,找出之間的相等關(guān)系列方程、求解、作答,即設(shè)、列、解、答。
列一元一次方程解應(yīng)用題的五個步驟
(1)審:細心審題,確定已知量和未知量,找出它們之間的等量關(guān)系.
(2)設(shè):設(shè)未知數(shù)(x),根據(jù)實際狀況,可設(shè)直接未知數(shù)(問什么設(shè)什么),也可設(shè)間接未知數(shù).
(3)列:根據(jù)等量關(guān)系列出方程.
(4)解:解方程,求得未知數(shù)的值.
(5)答:檢驗未知數(shù)的值是否正確,是否符合題意,完整地寫出答句.
5.正方體相對兩個面上的文字
(1)對于此類問題一般方法是用紙按圖的樣子折疊后可以解決,或是在對展開圖理解的基礎(chǔ)上直接想象.
(2)從實物出發(fā),結(jié)合具體的問題,辨析幾何體的展開圖,通過結(jié)合立體圖形與平面圖形的轉(zhuǎn)化,建立空間觀念,是解決此類問題的關(guān)鍵.
(3)正方體的展開圖有11種狀況,分析平面展開圖的各種狀況后再認真確定哪兩個面的對面.
6.直線、射線、線段
(1)直線、射線、線段的表示方法
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 市區(qū)兩層樓房出租合同范例
- 紙箱出售訂單合同范例
- 海運委托合同范例
- 美分銷合同范例
- 紙盒合同范例范例制作
- 工程門購買合同范例
- 印刷鋁板銷售合同范例
- 蘭州山區(qū)路燈合同范例
- 銅陵職業(yè)技術(shù)學(xué)院《傳統(tǒng)中國畫研習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷
- 完整版100以內(nèi)加減法混合運算4000道136
- 2024年世界職業(yè)院校技能大賽中職組“水利工程制圖與應(yīng)用組”賽項考試題庫(含答案)
- 常見的氨基酸的分類特點及理化性質(zhì)
- 【碳足跡報告】新鄉(xiāng)市錦源化工對位脂產(chǎn)品碳足跡報告
- 《工業(yè)機器人系統(tǒng)集成》課標
- 2024年高爾夫球車項目可行性研究報告
- 過敏反應(yīng)的分類和護理
- 民事陪審員培訓(xùn)課件
- 湖南財政經(jīng)濟學(xué)院《世界市場行情》2023-2024學(xué)年第一學(xué)期期末試卷
- 【課件】講文明懂禮儀守規(guī)矩 課件-2024-2025學(xué)年文明禮儀教育主題班會
- 計算流體力學(xué)CFD
- 汽車保險與理賠課件 7.4新能源汽車保險理賠典型事故案例
評論
0/150
提交評論