版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022年安徽省滁州市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案及部分解析)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.
3.
4.
5.方程x2+y2-z=0表示的二次曲面是()。A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面
6.
A.2B.1C.1/2D.0
7.
8.A.絕對收斂B.條件收斂C.發(fā)散D.無法確定斂散性
9.過點(0,2,4)且平行于平面x+2z=1,y-3z=2的直線方程為
A.
B.
C.
D.-2x+3(y-2)+z-4=0
10.曲線y=x2+5x+4在點(-1,0)處切線的斜率為
A.2B.-2C.3D.-311.12.A.A.sinx+sin2B.-sinx+sin2C.sinxD.-sinx13.A.A.4/3B.1C.2/3D.1/3
14.A.
B.x2
C.2x
D.
15.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x16.設(shè)有直線
當直線l1與l2平行時,λ等于().A.A.1
B.0
C.
D.一1
17.A.A.2/3B.3/2C.2D.3
18.
19.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上
A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值20.函數(shù)f(x)=2x3-9x2+12x-3單調(diào)減少的區(qū)間為A.(-∞,1]B.[1,2]C.[2,+∞)D.[1,+∞)二、填空題(20題)21.
22.23.微分方程dy+xdx=0的通解y=_____.24.
25.
26.27.
28.
29.
30.設(shè)f'(1)=2.則
31.函數(shù)y=cosx在[0,2π]上滿足羅爾定理,則ξ=______.
32.33.34.
35.
36.37.
38.
39.
40.三、計算題(20題)41.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
42.證明:43.當x一0時f(x)與sin2x是等價無窮小量,則44.求曲線在點(1,3)處的切線方程.45.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.46.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.47.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.48.49.50.
51.求微分方程的通解.
52.求微分方程y"-4y'+4y=e-2x的通解.
53.將f(x)=e-2X展開為x的冪級數(shù).54.
55.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.56.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.
57.
58.
59.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
60.
四、解答題(10題)61.
62.
63.
64.
65.
66.
67.68.
69.70.設(shè)y=x+arctanx,求y'.五、高等數(shù)學(xué)(0題)71.已知函數(shù)f(x)在點x0處可導(dǎo),則
=()。
A.一2f"(x0)
B.2f"(一x0)
C.2f"(x0)
D.不存在
六、解答題(0題)72.計算
參考答案
1.A
2.A
3.C
4.D
5.C本題考查的知識點為二次曲面的方程。
將x2+y2-z=0與二次曲面標準方程對照,可知其為旋轉(zhuǎn)拋面,故應(yīng)選C。
6.D本題考查的知識點為重要極限公式與無窮小量的性質(zhì).
7.D
8.A
9.C
10.C解析:
11.A
12.D
13.C
14.C
15.D
16.C本題考查的知識點為直線間的關(guān)系.
17.A
18.A
19.B本題考查了函數(shù)的單調(diào)性的知識點,
因y'=ex+1/(1+x2)>0處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加。
20.Bf(x)=2x3-9x2+12x-3的定義域為(-∞,+∞)
f'(x)=6x2-18x+12=6(x23x+2)=6(x-1)(x-2)。
令f'(x)=0得駐點x1=1,x2=2。
當x<1時,f'(x)>0,f(x)單調(diào)增加。
當1<x<2時,f'(x)<0,f(x)單調(diào)減少。
當x>2時,f'(x)>0,f(x)單調(diào)增加。因此知應(yīng)選B。
21.
22.
23.
24.本題考查的知識點為極限運算.
25.
26.
本題考查的知識點為二階常系數(shù)線性齊次微分方程的求解.
27.
28.
29.11解析:
30.11解析:本題考查的知識點為函數(shù)在一點處導(dǎo)數(shù)的定義.
由于f'(1)=2,可知
31.π
32.
33.本題考查的知識點為定積分的換元法.
34.
35.3x2siny3x2siny解析:
36.
37.4π本題考查了二重積分的知識點。
38.
39.40.本題考查的知識點為重要極限公式。
41.
42.
43.由等價無窮小量的定義可知44.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
45.
46.
列表:
說明
47.由二重積分物理意義知
48.
49.
50.
則
51.
52.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
53.54.由一階線性微分方程通解公式有
55.函數(shù)的定義域為
注意
56.
57.
58.
59.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100e
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能交通設(shè)施租賃合同3篇
- 2024年水磨石地坪系統(tǒng)分包施工合同3篇
- 2024年消費信貸個人協(xié)議
- 2024年食堂建筑項目施工與安全生產(chǎn)協(xié)議3篇
- 2025年度社會保障補貼合同范本3篇
- 2025年度出口企業(yè)出口貨物檢驗檢疫與憑證獲取合同3篇
- 2024年項目經(jīng)理雇傭協(xié)議
- 2024餐飲店加盟技術(shù)轉(zhuǎn)讓合同
- 2024年虛擬現(xiàn)實技術(shù)研發(fā)合作協(xié)議
- 2025年度新型工業(yè)園區(qū)租賃合同書3篇
- 小學(xué)一年級數(shù)學(xué)20以內(nèi)的口算題(可直接打印A4)
- 腫瘤放射治療體位固定技術(shù)
- 監(jiān)理報告范本
- 店鋪交割合同范例
- 新生兒心臟病護理查房
- 規(guī)劃設(shè)計行業(yè)數(shù)字化轉(zhuǎn)型趨勢
- 湖南省長沙市2024-2025學(xué)年高二上學(xué)期期中考試地理試卷(含答案)
- 物業(yè)年終總結(jié)匯報工作
- 金色簡約蛇年年終總結(jié)匯報模板
- 醫(yī)院住院病歷質(zhì)量檢查評分表(評分標準)
- 工程周工作計劃
評論
0/150
提交評論