




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年湖南省湘潭市普通高校對(duì)口單招數(shù)學(xué)自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.已知向量a=(1,k),b=(2,2),且a+b與a共線,那么a×b的值為()A.1B.2C.3D.4
2.A.B.C.D.
3.A.
B.
C.
4.不等式組的解集是()A.{x|0<x<2}
B.{x|0<x<2.5}
C.{x|0<x<}
D.{x|0<x<3}
5.A.B.C.D.
6.A.10B.5C.2D.12
7.執(zhí)行如圖的程序框圖,那么輸出S的值是()A.-1B.1/2C.2D.1
8.A.1/4B.1/3C.1/2D.1
9.已知P:x1,x2是方程x2-2y-6=0的兩個(gè)根,Q:x1+x2=-5,則P是Q的()A.充分條件B.必要條件C.充要條件D.既不充分也不必要條件
10.如圖,在長(zhǎng)方體ABCD—A1B1C1D1中,AB=AD=3cm,AA1=2cm,則四棱錐A—BB1D1D的體積為()cm3.A.5B.6C.7D.8
11.A.B.C.D.
12.下列命題中,假命題的是()A.a=0且b=0是AB=0的充分條件
B.a=0或b=0是AB=0的充分條件
C.a=0且b=0是AB=0的必要條件
D.a=0或b=0是AB=0的必要條件
13.已知a=(4,-4),點(diǎn)A(1,-1),B(2,-2),那么()A.a=ABB.a⊥ABC.|a|=|AB|D.a//AB
14.A.(6,7)B.(2,-1)C.(-2,1)D.(7,6)
15.己知向量a=(3,-2),b=(-1,1),則3a+2b
等于()A.(-7,4)B.(7,4)C.(-7,-4)D.(7,-4)
16.若f(x)=1/log1/2(2x+1),則f(x)的定義域?yàn)椋ǎ〢.(-1/2,0)B.(-1/2,+∞)C.(-1/2,0)∪(0,+∞)D.(-1/2,2)
17.A.-1B.0C.2D.1
18.若不等式|ax+2|<6的解集是{x|-1<x<2},則實(shí)數(shù)a等于()A.8B.2C.-4D.-8
19.已知橢圓x2/25+y2/m2=1(m>0)的左焦點(diǎn)為F1(-4,0)則m=()A.2B.3C.4D.9
20.A.B.C.D.
二、填空題(10題)21.
22.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S8=32,則a2+2a5十a(chǎn)6=_______.
23.已知i為虛數(shù)單位,則|3+2i|=______.
24.
25.
26.已知_____.
27.已知點(diǎn)A(5,-3)B(1,5),則點(diǎn)P的坐標(biāo)是_____.
28.函數(shù)的定義域是_____.
29.若事件A與事件ā互為對(duì)立事件,且P(ā)=P(A),則P(ā)=
。
30.不等式|x-3|<1的解集是
。
三、計(jì)算題(5題)31.解不等式4<|1-3x|<7
32.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。
33.求焦點(diǎn)x軸上,實(shí)半軸長(zhǎng)為4,且離心率為3/2的雙曲線方程.
34.近年來(lái),某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機(jī)抽取了該市四類垃圾箱總計(jì)100噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):(1)試估計(jì)“可回收垃圾”投放正確的概率;(2)試估計(jì)生活垃圾投放錯(cuò)誤的概率。
35.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.
四、簡(jiǎn)答題(10題)36.在等差數(shù)列中,已知a1,a4是方程x2-10x+16=0的兩個(gè)根,且a4>a1,求S8的值
37.等比數(shù)列{an}的前n項(xiàng)和Sn,已知S1,S3,S2成等差數(shù)列(1)求數(shù)列{an}的公比q(2)當(dāng)a1-a3=3時(shí),求Sn
38.已知求tan(a-2b)的值
39.點(diǎn)A是BCD所在平面外的一點(diǎn),且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
40.已知橢圓和直線,求當(dāng)m取何值時(shí),橢圓與直線分別相交、相切、相離。
41.組成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)列分別加上1、3、5后又成等比數(shù)列,求這三個(gè)數(shù)
42.求經(jīng)過(guò)點(diǎn)P(2,-3)且橫縱截距相等的直線方程
43.設(shè)拋物線y2=4x與直線y=2x+b相交A,B于兩點(diǎn),弦AB長(zhǎng),求b的值
44.化簡(jiǎn)
45.如圖:在長(zhǎng)方體從中,E,F(xiàn)分別為和AB和中點(diǎn)。(1)求證:AF//平面。(2)求與底面ABCD所成角的正切值。
五、證明題(10題)46.若x∈(0,1),求證:log3X3<log3X<X3.
47.如圖所示,四棱錐中P-ABCD,底面ABCD為矩形,點(diǎn)E為PB的中點(diǎn).求證:PD//平面ACE.
48.△ABC的三邊分別為a,b,c,為且,求證∠C=
49.己知
a
=(-1,2),b
=(-2,1),證明:cos〈a,b〉=4/5.
50.
51.長(zhǎng)、寬、高分別為3,4,5的長(zhǎng)方體,沿相鄰面對(duì)角線截取一個(gè)三棱錐(如圖).求證:剩下幾何體的體積為三棱錐體積的5倍.
52.己知直線l:x+y+4=0且圓心為(1,-1)的圓C與直線l相切。證明:圓C的標(biāo)準(zhǔn)方程為(x-1)2
+(y+1)2
=8.
53.己知sin(θ+α)=sin(θ+β),求證:
54.己知x∈(1,10),A=lg2x,B=lgx2,證明:A<B.
55.己知正方體ABCD-A1B1C1D1,證明:直線AC1與直線A1D1所成角的余弦值為.
六、綜合題(2題)56.
57.己知橢圓與拋物線y2=4x有共同的焦點(diǎn)F2,過(guò)橢圓的左焦點(diǎn)F1作傾斜角為的直線,與橢圓相交于M、N兩點(diǎn).求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.
參考答案
1.D平面向量的線性運(yùn)算∵向量a=(1,k),b=(2,2),∴a+b=(3,k+2),又a+b與a共線.∴(k+2)-3k=0,解得k=1,∴A×b=(1,1).(2,2)=1×2+1×2=4,
2.A
3.B
4.C由不等式組可得,所以或,由①可得,求得;由②可得,求得,綜上可得。
5.C
6.A
7.C
8.C
9.A根據(jù)根與系數(shù)的關(guān)系,可知由P能夠得到Q,而已知x1+x2=5,并不能推出二者是原方程的根,所以P是Q的充分條件。
10.B四棱錐的體積公式∵長(zhǎng)方體底面ABCD是正方形,∴△ABD中BD=3cm,BD邊上的高是3/2cm,∴四棱錐A-BB1DD1的體積為去1/3×3×2×3/2=6
11.C
12.C
13.D由,則兩者平行。
14.A
15.D
16.C函數(shù)的定義域.㏒1/2(2x+l)≠0,所以2x+l>0,2x+l≠1.所以x∈(-1/2,0)∪(0,+∞).
17.D
18.C
19.B橢圓的性質(zhì).由題意知25-m2=16,解得m2=9,又m>0,所以m=3.
20.A
21.
22.16.等差數(shù)列的性質(zhì).由S8=32得4(a4+a5)=8,故a2+2a5+a6=2(a4+a5)=16.
23.
復(fù)數(shù)模的計(jì)算.|3+2i|=
24.π/4
25.2/5
26.
27.(2,3),設(shè)P(x,y),AP=(x-5,y+3),AB=(-4,8),所以x-5=(-4)*(3/4)=-3;得x=2;y+3=8*(3/4)=6;得y=3;所以P(2,3).
28.{x|1<x<5且x≠2},
29.0.5由于兩個(gè)事件是對(duì)立事件,因此兩者的概率之和為1,又兩個(gè)事件的概率相等,因此概率均為0.5.
30.
31.
32.
33.解:實(shí)半軸長(zhǎng)為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
34.
35.解:(1)因?yàn)閒(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因?yàn)閒(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2
36.方程的兩個(gè)根為2和8,又∴又∵a4=a1+3d,∴d=2∵。
37.
38.
39.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導(dǎo)出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。
(2)取BC中點(diǎn)O,以O(shè)為原點(diǎn),過(guò)O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點(diǎn)O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O(shè)為原點(diǎn),過(guò)O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,
40.∵∴當(dāng)△>0時(shí),即,相交當(dāng)△=0時(shí),即,相切當(dāng)△<0時(shí),即,相離
41.
42.設(shè)所求直線方程為y=kx+b由題意可知-3=2k+b,b=解得,時(shí),b=0或k=-1時(shí),b=-1∴所求直線為
43.由已知得整理得(2x+m)2=4x即∴再根據(jù)兩點(diǎn)間距離公式得
44.sinα
45.
46.
47.
∴
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 補(bǔ)水保濕清潔管理制度
- 韓國(guó)三星公司管理制度
- 高端小區(qū)寵物管理制度
- 項(xiàng)目保安值班管理制度
- 供配電設(shè)施管理制度
- 餐飲員工管理制度前廳
- 高周轉(zhuǎn)與合同管理制度
- 融資租賃安全管理制度
- 高校創(chuàng)收經(jīng)費(fèi)管理制度
- 酒廠倉(cāng)庫(kù)管理制度制度
- 藥融云-甾體類藥物行業(yè)產(chǎn)業(yè)鏈白皮書
- 中國(guó)傳統(tǒng)節(jié)日介紹-課件
- AI輔助詩(shī)詞鑒賞研究
- 肺彌散功能測(cè)定標(biāo)準(zhǔn)
- 勞務(wù)分包合同架子工
- 肌少癥的診斷評(píng)估與治療專家共識(shí)(2023年版)
- 小腸系膜腫瘤的CT表現(xiàn)及其鑒別診斷
- 國(guó)際疾病分類ICD11編碼庫(kù)
- 租賃房屋長(zhǎng)住房合約合同
- 醫(yī)療廢物管理?xiàng)l例課件
- 七年級(jí)數(shù)學(xué)期末考試答題卡
評(píng)論
0/150
提交評(píng)論