新人教版七年級上數(shù)學導學案_第1頁
新人教版七年級上數(shù)學導學案_第2頁
新人教版七年級上數(shù)學導學案_第3頁
新人教版七年級上數(shù)學導學案_第4頁
新人教版七年級上數(shù)學導學案_第5頁
已閱讀5頁,還剩106頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

第一章有理數(shù)

第1課時:1.1正數(shù)和負數(shù)(1)

導學目標:1、掌握正數(shù)和負數(shù)概念;

2、會區(qū)分兩種不同意義的量,會用符號表示正數(shù)和負數(shù);

3、體驗數(shù)學發(fā)展是生活實際的需要,激發(fā)學生導學數(shù)學的興趣。

導學重點:正數(shù)和負數(shù)概念

導學難點:負數(shù)概念

導學指導:

一、改變舊世界:

1、小學里學過哪些數(shù)請寫出來:、、。

2、閱讀課本刊和P2三幅圖(重點是三個例子,邊閱讀邊思考)

回答下面提出的問題:

3、在生活中,僅有整數(shù)和分數(shù)夠用了嗎?有沒有比。小的數(shù)?如果有,那叫做什么數(shù)?

二、知識新天地

1、正數(shù)與負數(shù)的產(chǎn)生

(1)、生活中具有相反意義的量

如:運進5噸與運出3噸;上升7米與下降8米;向東50米與向西47米等都是生活中遇到的

具有相反意義的量。

請你也舉一個具有相反意義量的例子:。

(2)負數(shù)的產(chǎn)生同樣是生活和生產(chǎn)的需要

2、正數(shù)和負數(shù)的表示方法

(1)一般地,我們把上升、運進、零上、收入、前進、高出等規(guī)定為正的,而與它相反的量,

如:下降、運出、零下、支出、后退、低于等規(guī)定為負的。正的量就用小學里學過的數(shù)表示,

有時也在它前面放上一個“+”(讀作正)號,如前面的5、7、50;負的量用小學學過的數(shù)前

面放上“一”(讀作負)號來表示,如上面的一3、一8、一47。

(2)活動兩個同學為一組,一同學任意說意義相反的兩個量,另一個同學用正負數(shù)表示.

(3)閱讀P3練習前的內(nèi)容

3、正數(shù)、負數(shù)的概念

1)大于0的數(shù)叫做,小于0的數(shù)叫做。

2)正數(shù)是大于0的數(shù),負數(shù)是的數(shù),0既不是正數(shù)也不是負數(shù)。

三、學??酂o邊:

1.P3第一題到第四題(直接做在課本上)。

2.小明的姐姐在銀行工作,她把存入3萬元記作+3萬元,那么支取2萬元應記作,-4

萬元表示O

13

3.已知下列各數(shù):—一,一2一,3.14,+3065,0,-239;

54

則正數(shù)有;負數(shù)有o

4.下列結(jié)論中正確的是...............................()

A.。既是正數(shù),又是負數(shù)B.O是最小的正數(shù)

C.0是最大的負數(shù)D.0既不是正數(shù),也不是負數(shù)

5.給出下列各數(shù):-3,0,+5,-35,+3.1,2004,+2010;

22

其中是負數(shù)的有.........................................()

A.2個B.3個C.4個D.5個

四、金秋爛漫時:

正數(shù)、負數(shù)的概念:

(1)大于。的數(shù)叫做,小于0的數(shù)叫做。

(2)正數(shù)是大于0的數(shù),負數(shù)是的數(shù),0既不是正數(shù)也不是負數(shù)。

五、萬里長征路:

1.零下15℃,表示為,比O℃低4℃的溫度是。

2.地圖上標有甲地海拔高度30米,乙地海拔高度為20米,丙地海拔高度為-5米,其中最高處為

地,最低處為地.

3.“甲比乙大-3歲”表示的意義是_____________________o

4.如果海平面的高度為。米,一潛水艇在海水下40米處航行,一條鯊魚在潛水艇上方10米處游

動,試用正負數(shù)分別表示潛水艇和鯊魚的高度。

第2課時:1.1正數(shù)和負數(shù)(2)

導學目標:1、會用正、負數(shù)表示具有相反意義的量;

2、通過正、負數(shù)導學,培養(yǎng)學生應用數(shù)學知識的意識;

導學重點:用正、負數(shù)表示具有相反意義的量;

導學難點:實際問題中的數(shù)量關系;

導學指導:

一、改變舊世界.

通過上節(jié)課的導學,我們知道在實際生產(chǎn)和生活中存在著兩種不同意義的量,為了區(qū)分它們,我們用

和來分別表示它們。

問題:“零”為什么即不是正數(shù)也不是負數(shù)呢?

引導學生思考討論,借助舉例說明。

參考例子:溫度表示中的零上,零下和零度。

二.知識新天地

問題:(課本第4頁例題)

先引導學生分析,再讓學生獨立完成

例(1)一個月內(nèi),小明體重增加2kg,小華體重減少1kg,小強體重無變化,寫出他們這個月的體重增

長值;

例⑵2001年下列國家的商品進出口總額比上一年的變化情況是:

美國減少6.4%,德國增長1.3%,

法國減少2.4%,英國減少3.5%,

意大利增長02%,中國增長7.5%.

寫出這些國家2001年商品進出口總額的增長率;

解:(1)這個月小明體重增長,小華體重增長,小強體重增長

2)六個國家2001年商品進出口總額的增長率:

美國__________________________德國__________

法國__________________________英國__________

意大利中國

三、學??酂o邊

1.課本第4頁練習

2、閱讀思考

(課本第8頁)用正負數(shù)表示加工允許誤差;

問題:直徑為30.032mm和直徑為29.97的零件是否合格?

四、金秋爛漫時

1、本節(jié)課你有那些收獲?

2、還有沒解決的問題嗎?

五、萬里長征路

(1)甲冷庫的溫度是-12°C,乙冷庫的溫度比甲冷酷低5°C,則乙冷庫的溫度;

(2)一種零件的內(nèi)徑尺寸在圖紙上是9±0.05(單位:mm),表示這種零件的標準尺寸是9mm,加工要求

最大不超過標準尺寸多少?最小不小于標準尺寸多少?

第3課時:1.2.1有理數(shù)

導學目標:1、掌握有理數(shù)的概念,會對有理數(shù)按一定標準進行分類,培養(yǎng)分類能力;

2、了解分類的標準與集合的含義;

3、體驗分類是數(shù)學上常用的處理問題方法;

導學重點:正確理解有理數(shù)的概念

導學難點:正確理解分類的標準和按照一定標準分類

導學指導:

一、改變舊世界

1、通過兩節(jié)課的導學,,那么你能寫出3個不同類的數(shù)嗎?.(4名學生板書)

二、知識新天地

問題1:觀察黑板上的12個數(shù),我們將這4位同學所寫的數(shù)做一下分類;

該分為幾類,又該怎樣分呢?先分組討論交流,再寫出來

分為類,分別是:

引導歸納:

統(tǒng)稱為整數(shù),統(tǒng)稱為有理數(shù)。

問題2:我們是否可以把上述數(shù)分為兩類?如果可以,應分為哪兩類?

師生共同交流、歸納

2、正數(shù)集合與負數(shù)集合

所有的正數(shù)組成集合,所有的負數(shù)組成集合

三、學??酂o邊

1、P8練習(做在課本上)

2.把下列各數(shù)填入它所屬于的集合的圈內(nèi):

1213

15,—,-5,--,-----,0.1,-5.32,-80,123,2.333;

四、金秋爛漫時:

有理數(shù)分類

'正整數(shù)

正整數(shù)

正有理數(shù),整數(shù)W乒

正分數(shù)

負整數(shù)

有理數(shù)<零或者有理數(shù)'

'負整數(shù)'正分數(shù)

負有理數(shù)?分數(shù),

.負分數(shù)負分數(shù)

五、萬里長征路

1、下列說法中不正確的是...................................()

A.-3.14既是負數(shù),分數(shù),也是有理數(shù)

B.0既不是正數(shù),也不是負數(shù),但是整數(shù)

c.-2000既是負數(shù),也是整數(shù),但不是有理數(shù)

D.O是正數(shù)和負數(shù)的分界

2、在下表適當?shù)目崭窭锂嬌咸?/p>

有理數(shù)整數(shù)分數(shù)正整數(shù)負分數(shù)自然數(shù)

-8是

-2.25是

3

可是

0是

第4課時:1.2.2數(shù)軸

導學目標:

1、掌握數(shù)軸概念,理解數(shù)軸上的點和有理數(shù)的對應關系;

2、會正確地畫出數(shù)軸,利用數(shù)軸上的點表示有理數(shù);

3、領會數(shù)形結(jié)合的重要思想方法;

重點難點:數(shù)軸的概念與用數(shù)軸上的點表示有理數(shù);

導學指導

一、改變舊世界

1、觀察下面的溫度計,讀出溫度.分別是°C、°C、°C;

2、在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車

站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境?

汽車站

請同學們分小組討論,交流合作,動手操作

二、知識新天地

1、由上面的兩個問題,你受到了什么啟發(fā)?能用直線上的點來表示有理數(shù)嗎?

2、自己動手操作,看看可以表示有理數(shù)的直線必須滿足什么條件?

引導歸納:

1)、畫數(shù)軸需要三個條件,即、方向和長度。

2)數(shù)軸

三、學海苦無邊

1、請你畫好一條數(shù)軸

2、利用上面的數(shù)軸表示下列有理數(shù)

92

1.5,—2,2,—2.5,一,—,0;

23

3、寫出數(shù)軸上點A,B,C,D,E所表示的數(shù):

EBACD

工[1■!1i.i-二-

-3-2-1012*3*5

4、尋找規(guī)律

1)、觀察上面數(shù)軸,哪些數(shù)在原點的左邊,哪些數(shù)在原點的右邊,由此你有什么發(fā)現(xiàn)?

2)、每個數(shù)到原點的距離是多少?由此你又有什么發(fā)現(xiàn)?

3)、進一步引導學生完成P9歸納

四、金秋爛漫時:

畫數(shù)軸需要三個條件是什么?

五、萬里長征路

312

1、在數(shù)軸上,表示數(shù)-3,2.6,-二,0,4二,-2二,-1的點中,在原點左邊的點有個。

533一

2、在數(shù)軸上點A表示-4,如果把原點O向正方向移動1個單位,那么在新數(shù)軸上點A表示的數(shù)是(

A.-5,B.-4C.-3D.-2

3、你覺得數(shù)軸上的點表示數(shù)的大小與點的位置有什么關系?

第5課時:1.2.3相反數(shù)

導學目標:

1、掌握相反數(shù)的意義;

2、掌握求一個已知數(shù)的相反數(shù);

3、體驗數(shù)形結(jié)合思想;

導學重點:求一個已知數(shù)的相反數(shù);

導學難點:根據(jù)相反數(shù)的意義化簡符號。

導學指導

一、改變舊世界

1、數(shù)軸的三要素是什么?在下面畫出一條數(shù)軸:

2、在上面的數(shù)軸上描出表示5、一2、-5、+2這四個數(shù)的點。

3、觀察上圖并填空:數(shù)軸上與原點的距離是2的點有個,這些點表示的數(shù)是

與原點的距離是5的點有個,這些點表示的數(shù)是。

從上面問題可以看出,一般地,如果a是一個正數(shù),那么數(shù)軸上與原點的距離是a的點有兩

個,即一個表示a,另一個是,它們分別在原點的左邊和右邊,我們說,這兩點關于原點對稱。

二、知識新天地

自學課本第10、11的內(nèi)容并填空:

1、相反數(shù)的概念

像2和一2、5和一5、3和一3這樣,只有不同的兩個數(shù)叫做互為相反數(shù)。

2、練習

(1)、2.5的相反數(shù)是,一1:和是互為相反數(shù),的相反數(shù)是2010;

(2)、a和互為相反數(shù),也就是說,一a是的相反數(shù)

例如a=7時,-a=-7,即7的相反數(shù)是一7.

a=-5時,-a=一(一5),“一(一5)”燃“一5的相反數(shù)”,而一5的相反數(shù)是5,所

以,

一(—5)=5

你發(fā)現(xiàn)了嗎,在一個數(shù)的前面添上一個“一”號,這個數(shù)就成了原數(shù)的

(3)簡化符號:一(+0.75)=,-(-68)=,

—(—0.5)=,—(+3.8)=;

(4)、0的相反數(shù)是.

3、數(shù)軸上表示相反數(shù)的兩個點和原點的距離。

三、學??酂o邊:P11第1、2、3題

四、金秋爛漫時:

1、本節(jié)課你有那些收獲?

2、還有沒解決的問題嗎?

五、萬里長征路

L在數(shù)軸上標出3,-1.5,0各數(shù)與它們的相反數(shù)。

2.-1.6的相反數(shù)是,2x的相反數(shù)是,a-b的相反數(shù)是

3.相反數(shù)等于它本身的數(shù)是,相反數(shù)大于它本身的數(shù)是;

4.填空:

(1)如果a=-13,那么一a=;

(2)如果-a=—5.4,那么a=;

(3)如果一x=-6,那么x=;

(4)一x=9,那么x=;

5.數(shù)軸上表示互為相反數(shù)的兩個數(shù)的點之間的距離為10,求這兩個數(shù)。

第6課時:1.2.4絕對值

導學目標:

1、理解、掌握絕對值概念.體會絕對值的作用與意義;

2、掌握求一個已知數(shù)的絕對值和有理數(shù)大小比較的方法;

3、體驗運用直觀知識解決數(shù)學問題的成功;

重點難點:絕對值的概念與兩個負數(shù)的大小比較

導學指導

一、改變舊世界

問題:如下圖

小紅和小明從同一處O出發(fā),分別向東、西方向行走10米,他們行走的路線(填相同或不

相同),他們行走的距離(即路程遠近)

單位:米

-10o10

二、知識新天地

1、由上問題可以知道,io到原點的距離是,一io到原點的距離也是

到原點的距離等于io的數(shù)有個,它們的關系是一對。

這時我們就說10的絕對值是10,—10的絕對值也是10;

例如,一3.8的絕對值是3.8;17的絕對值是17;—6;的絕對值是

一般地,數(shù)軸匕表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,記作IaI。

2、練習

(1)、式子I-5.7|表示的意義是。

(2)、-2的絕對值表示它離開原點的距離是個單位,記作;

(3)、I24|=.I—3.11=,I-----I=,I0I=;

------------3

3、思考、交流、歸納

由絕對值的定義可知:一個正數(shù)的絕對值是;一個負數(shù)的絕對值是它的

0的絕對值是O

用式子表示就是:

1)、當a是正數(shù)(即a>0)時,IaI=;

2)、當a是負數(shù)(即a<0)時,IaI=;

3)、當a=0時,IaI=;

4、隨堂練習P12第1、2大題(直接做在課本上)

5、閱讀思考,發(fā)現(xiàn)新知

閱讀P12問題一P13第12行,你有什么發(fā)現(xiàn)嗎?

在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總要左邊的數(shù)。

也就是:

1)、正數(shù)—0,負數(shù)_0,正數(shù)大于負數(shù)。

2),兩個負數(shù),絕對值大的。

三、學海苦無邊:

1、自學例題P13(教師指導)

2、比較下列各對數(shù)的大小:一3和一5;-2.5和一I—2.25I

四、金秋爛漫時:

一個正數(shù)的絕對值是;一個負數(shù)的絕對值是它的;

0的絕對值是。

五、萬里長征路

1.如果|-2a\=-2a,則a的取值范圍是...................()

A.a>OB.a>OC.a<OD.a<O

2.|x|=7,貝ijx=;|-x|=7,貝i]x=.

3.如果a>3,則卜一3|=,|3-?|=.

4.絕對值等于其相反數(shù)的數(shù)一定是)

A.負數(shù)B.正數(shù)C.負數(shù)或零D.正數(shù)或零

5.給出下列說法:

①互為相反數(shù)的兩個數(shù)絕對值相等;②絕對值等于本身的數(shù)只有正數(shù);

③不相等的兩個數(shù)絕對值不相等;④絕對值相等的兩數(shù)一定相等.

其中正確的有.......................................()

A.0個B.1個C.2個D.3個

第7課時:1.3.1有理數(shù)的加法(1)

導學目標:

1、理解有理數(shù)加法意義,掌握有理數(shù)加法法則,會正確進行有理數(shù)加法運算;

2、會利用有理數(shù)加法運算解決簡單的實際問題;

導學重點:有理數(shù)加法法則

導學難點:異號兩數(shù)相加

導學指導

一、改變舊世界

1、正有理數(shù)及0的加法運算,小學已經(jīng)學過,然而實際問題中做加法運算的數(shù)有可能超出正數(shù)范圍。

例如,足球循環(huán)賽中,可以把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的和叫做凈勝球數(shù)。如果,紅

隊進4個球,失2個球;藍隊進1個球,失1個球。

于是紅隊的凈勝球數(shù)為4+(-2),

藍隊的凈勝球數(shù)為1+(-Do

這里用到正數(shù)和負數(shù)的加法。那么,怎樣計算4+(-2)

下面我們一起借助數(shù)軸來討論有理數(shù)的加法。

二、知識新天地

1、借助數(shù)軸來討論有理數(shù)的加法

1)如果規(guī)定向東為正,向西為負,那么一個人向東走4米,再向東走2米,兩次共向東走了米,

這個問題用算式表示就是:

.卜.".A卜一,

-10123456丁’

2)如果規(guī)定向東為正,向西為負,那么一個人向西走2米,再向西走4米,兩

次共向西走多少米?很明顯,兩次共向西走了米。

這個問題用算式表示就是:

如圖所示:

3)如果向西走2米,再向東走4米,那么兩次運動后,這個人從起點向東走了_米,寫成

算式就是這個問題用數(shù)軸表示如下圖所示:

4)利用數(shù)軸,求以下情況時這個人兩次運動的結(jié)果:

①先向東走3米,再向西走5米,這個人從起點向()走了()米;

②先向東走5米,再向西走5米,這個人從起點向()走了()米;

③先向西走5米,再向東走5米,這個人從起點向()走了()米。

寫出這三種情況運動結(jié)果的算式

5)如果這個人第一秒向東(或向西)走5米,第二秒原地不動,兩秒后這個人

從起點向東(或向西)運動了一米。寫成算式就是

2、師生歸納兩個有理數(shù)相加的幾種情況。

3.你能從以上幾個算式中發(fā)現(xiàn)有理數(shù)加法的運算法則嗎?

有理數(shù)加法法則

(1)同號的兩數(shù)相加,取的符號,并把相加。

(2)絕對值不相等的異號兩數(shù)相加,取的加數(shù)的符號,并用較大的絕對值..較小

的絕對值.互為相反數(shù)的兩個數(shù)相加得;

(3)一個數(shù)同。相加,仍得o

4.學??酂o邊

例1計算(自己動動手吧!)

(1)(-3)+(-9);(2)(-4.7)+3.9.

例2(自己獨立完成)

四、學??酂o邊:

1.填空:(口答)

(1)64)+(-6)=;(2)3+(-8)=

(4)7+(-7)=;(4)69)+1=;

(5)66)+0=;(6)0+(-3)=

2.課本P18第1、2題

五、金秋爛漫時:

有理數(shù)加法法則:

六、萬里長征路:

1.判斷題:

(1)兩個負數(shù)的和一定是負數(shù);

(2)絕對值相等的兩個數(shù)的和等于零;

(3)若兩個有理數(shù)相加時的和為負數(shù),這兩個有理數(shù)一定都是負數(shù);

(4)若兩個有理數(shù)相加時的和為正數(shù),這兩個有理數(shù)一定都是正數(shù)。

2.已知|a|=8,|b|=2;

(1)當a、b同號時,求a+6的值;

(2)當a、b異號時,求a+b的值。

第8課時:1.3.1有理數(shù)的加法(2)

導學目標:掌握加法運算律并能運用加法運算律簡化運算;

導學重點:運用加法運算律簡化運算;

導學難點:靈活運用加法運算律簡化運算

導學指導

一、改變舊世界

1、想一想,小學里我們學過的加法運算定律有哪些?先說說,再用字母表示寫在下

面:、_________________________________

2、計算

(1)30+(-20)=(-20)+30=

⑵[8+(-5)]+(-4)=8+[(-5)]+(-4)]=

思考:觀察上面的式子與計算結(jié)果,你有什么發(fā)現(xiàn)?

二、知識新天地

1、請說說你發(fā)現(xiàn)的規(guī)律

2、自己換幾個數(shù)字驗證一下,還有上面的規(guī)律嗎

3、由上可以知道,小學導學的加法交換律、結(jié)合律在有理數(shù)范圍內(nèi)同樣適應,

即:兩個數(shù)相加,交換加數(shù)的位置,和.式子表示為

三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和

用式子表示為___________________________

想想看,式子中的字母可以是哪些數(shù)?____________________________________

例1計算:1)16+(-25)+24+(-35)

2)(—2.48)+(+4.33)+(—7.52)+(—4.33)

例2每袋小麥的標準重量為90千克,10袋小麥稱重記錄如下:

919191.58991.291.388.788.891.891.1

10袋小麥總計超過多少千克或不足多少千克?10袋小麥的總重量是多少千克?

想一想,你會怎樣計算,再把自己的想法與同伴交流一下。

三、學??酂o邊

課本P20頁練習1、2

四、金秋爛漫時:

你會用加法交換律、結(jié)合律簡化運算了嗎?

五、萬里長征路

1.計算:

(1)(-7)+11+3+(—2);(2);+(—g)+:+(—;)+

2.絕對值不大于10的整數(shù)有個,它們的和是

3、填空:

(1)若a>0,b>0,那么a+6______0.

(2)若a<0,bvO,那么a+b______0.

(3)若a>0,bvO,且1a|>Ib|那么a+b______0

(4)若a<0,b>0,且1a|>1b\那么a+b______0

4.某儲蓄所在某日內(nèi)做了7件工作,取出950元,存入5000元,取出800元,存入12000元,

取出10000元,取出2000元.問這個儲蓄所這一天,共增加多少元?

5、課本P20實驗與探究

第9課時:1.3.2有理數(shù)的減法(1)

導學目標:1、經(jīng)歷探索有理數(shù)減法法則的過程.理解并掌握有理數(shù)減法法則;

2、會正確進行有理數(shù)減法運算;

3、體驗把減法轉(zhuǎn)化為加法的轉(zhuǎn)化思想;

導學重點:有理數(shù)減法法則和運算

導學難點:有理數(shù)減法法則和運算

導學指導

一、改變舊世界

1、世界上最高的山峰珠穆郎瑪峰海拔高度約是8844米,吐魯番盆地的海拔高度約為一154米,

兩處的高度相差多少呢?

試試看,計算的算式應該是.能算出來嗎,畫草圖試試

2、長春某天的氣溫是一2°C?3°C,這一天的溫差是多少呢?(溫差是最高氣溫減最低氣溫,單位:。C)顯

然,這天的溫差是3—(—2);

想想看,溫差到底是多少呢?那么,3-(-2)=;

二、知識新天地

1、還記得嗎,被減數(shù)、減數(shù)差之間的關系是:被減數(shù)一減數(shù)=;

差+減數(shù)=。

2、請你與同桌伙伴一起探究、交流:

要計算3—(-2)=?,實際上也就是要求:?+(-2)=3,所以這個數(shù)(差)應該是

也就是3—(—2)=5;

再看看,3+2=;所以3—(-2)3+2;

由上你有什么發(fā)現(xiàn)?請寫出來.

3、換兩個式子計算一下,看看上面的結(jié)論還成立嗎?

—1—(—3)=,—1+3=,所以一1一(—3)_—1+3;

0—(—3)=,0+3=,所以0—(—3)_0+3;

4、師生歸納

1)法則:____________________________________

2)字母表示:____________________________________

5、例題

例1計算:

(1)(-3)-(-5);(2)0-7;

,、1=1

(3)7.2—(—4.8);(4)-3--5—;

24

請同學們先嘗試解決

三、學海苦無邊:課本P231.2

四、金秋爛漫時:

有理數(shù)減法法則:

五、萬里長征路

1、計算:

(1)(-37)-(-47);(2)(r53)-16;

(3)(r210)-87;(4)1.3-(-2.7);

31

(5)62-)-(-1-);

42

2.分別求出數(shù)軸上下列兩點間的距離:

(1)表示數(shù)8的點與表示數(shù)3的點;

(2)表示數(shù)一2的點與表示數(shù)一3的點;

第10課時:1.3.2有理數(shù)的減法(2)

導學目標:1、理解加減法統(tǒng)一成加法運算的意義;

2、會將有理數(shù)的加減混合運算轉(zhuǎn)化為有理數(shù)的加法運算;

導學重點:有理數(shù)加減法統(tǒng)一成加法運算;

導學難點:有理數(shù)加減法統(tǒng)一成加法運算

導學指導

一、改變舊世界

1、一架飛機作特技表演,起飛后的高度變化如下表:

高度的變化上升4.5千米下降3.2千米上升1.1千米下降1.4千米

記作+4.5千米—3.2千米+1.1千米一1.4千米

請你們想一想,并和同伴一起交流,算算此時飛機比起飛點高了千米。

2、你是怎么算出來的,方法是_______________________________

二、知識新天地

1、現(xiàn)在我們來研究(-20)+(+3)-(-5)-(+7),該怎么計算呢?還是先自己獨立動動手吧!

2、怎么樣,計算出來了嗎,是怎樣計算的,與同伴交流交流,師巡視指導。

3、師生共同歸納:遇到一個式子既有加法,又有減法,第一步應該先把減法轉(zhuǎn)化為.再把加

號記在腦子里,省略不寫

如:(-20)+(+3)-(-5)-(+7)有加法也有減法

=(-20)+(+3)+(+5)+(-7)先把減法轉(zhuǎn)化為加法

=-20+3+5-7再把加號記在腦子里,省略不寫

可以讀作:“負20、正3、正5、負7的”或者“負20加3加5減7”.

4、師生完整寫出解題過程

一117

5、補充例題:計算一4.4—(—4—)—(+2—)+(—2—)+12.4;

5210

三、學??酂o邊

計算:(課本P24練習)

(1)1—4+3—0.5;(2)24+3.5—4.6+3.5;

(3)(-7)-(+5)+(-4)-(-10);

四、金秋爛漫時:

把你的收獲寫在這里:

五、萬里長征路:

1、計算:

245

1)27—18+(—7)—322)(++(--)-(+-)-(+1)

第11課時:1.4.1有理數(shù)的乘法(1)

導學目標:1、理解有理數(shù)的運算法則;能根據(jù)有理數(shù)乘法運算法則進行有理的簡單運算;

2、經(jīng)歷探索有理數(shù)乘法法則過程,發(fā)展觀察、歸納、猜想、驗證能力;

導學重點:有理數(shù)乘法法則

導學難點:能利用有理數(shù)乘法的法則進行計算

導學指導

一、改變舊世界

1.有理數(shù)加法法則內(nèi)容是什么?

2.計算

(1)2+2+2=(2)(-2)+(-2)+(-2)=

3.你能將上面兩個算式寫成乘法算式嗎?

二、知識新天地

1、自學課本28-29頁回答下列問題

(1)如果它以每分2cm的速度向右爬行,3分鐘后它在什么位置?

可以表示為.

(2)如果它以每分2cm的速度向左爬行,3分鐘后它在什么位置?

可以表示為___________________________

(3)如果它以每分2cm的速度向右爬行,3分鐘前它在什么位置?

可以表示為________________________

(4)如果它以每分2cm的速度向左爬行,3分鐘前它在什么位置?

可以表示為_________________

由上可知:

(1)2X3=;(2)(-2)X3=

(3)0-2)X(-3)=;(4)62)X(-3)=

(5)兩個數(shù)相乘,一個數(shù)是。時,結(jié)果為0

觀察上面的式子,你有什么發(fā)現(xiàn)?能說出有理數(shù)乘法法則嗎?

歸納有理數(shù)乘法法則

兩數(shù)相乘,同號,異號,并把相乘。

任何數(shù)與0相乘,都得。

2、直接說出下列兩數(shù)相乘所得積的符號

1)5X(—3);2)(—4)X6

3)(—7)X(-9);4)0.9X8;

3、請同學們自己完成

例1m:(1)3)X9;(2)e-)X(-2);

2

歸納:的兩個數(shù)互為倒數(shù)。

例2

三、學海苦無邊

課本30頁練習1.2.3(直接做在課本上)

四、金秋爛漫時:

有理數(shù)乘法法則:

五、萬里長征路

1.如果ab>0,a+b>0,確定a、b的正負。

2.對于有理數(shù)a、b定義一種運算:a*b=2a-b,計算(-2)*3+1

第12課時:1.4.1有理數(shù)的乘法(2)

導學目標:1、經(jīng)歷探索多個有理數(shù)相乘的符號確定法則;

2、會進行有理數(shù)的乘法運算;

3、通過對問題的探索,培養(yǎng)觀察、分析和概括的能力;

導學重點:多個有理數(shù)乘法運算符號的確定;

導學難點:正確進行多個有理數(shù)的乘法運算;

導學指導

一、改變舊世界

1、有理數(shù)乘法法則:

二、知識新天地

1、觀察:下列各式的積是正的還是負的?

2X3X4X(-5),

2X3X(-4)X(-5),

2X(-3)X(-4)X(-5),

(—2)X(―3)X(—4)X(—5);

思考:幾個不是。的數(shù)相乘,積的符號與負因數(shù)的個數(shù)之間有什么關系?

分組討論交流,再用自己的語言表達所發(fā)現(xiàn)的規(guī)律:

幾個不是0的數(shù)相乘,負因數(shù)的個數(shù)是時,積是正數(shù);

負因數(shù)的個數(shù)是時,積是負數(shù)。

2、例題3,(P31頁)

請你思考,多個不是。的數(shù)相乘,先做哪一步,再做哪一步?

你能看出下列式子的結(jié)果嗎?如果能,理由

7.8X(-8.1)XOX(-19.6)

師生小結(jié):_____________________________

三、學海苦無邊

計算:(課本P32練習)

⑴、—5X8X(—7)X(—0.25);(2)、(--—)x—X—x

12152

5g32

(3)(-Dx(--)x—x-x(--)xOx(-l);

四、金秋爛漫時:

1.幾個不是0的數(shù)相乘,負因數(shù)的個數(shù)是時,積是正數(shù);

負因數(shù)的個數(shù)是,時,積是負數(shù)。

2.幾個數(shù)相乘,如果其中有一個因數(shù)為0,積等于0;

五、萬里長征路:

一、選擇

L若干個不等于0的有理數(shù)相乘,積的符號()

A.由因數(shù)的個數(shù)決定B.由正因數(shù)的個數(shù)決定

C.由負因數(shù)的個數(shù)決定D.由負因數(shù)和正因數(shù)個數(shù)的差為決定

2.下列運算結(jié)果為負值的是()

A.(-7)X(-6)B.(-6)+(-4)C.OX(-2)(-3)D.(-7)-(-15)

3.下列運算錯誤的是()

A.(-2)X(-3)=6B.[-g)x(-6)=-3

C.(-5)X(-2)X(-4)=-40D.(-3)X(-2)X(-4)=-24

二、計算:

第13課時:1.4.1有理數(shù)的乘法(3)

導學目標:1、熟練有理數(shù)的乘法運算并能用乘法運算律簡化運算;

2、學生通過觀察、思考、探究、討論,主動地進行導學;

導學重點:正確運用運算律,使運算簡化

導學難點:運用運算律,使運算簡化

導學指導

一、改變舊世界

1、請同學們計算.并比較它們的結(jié)果:

(1)(-6)X5=5X(-6)=

(2)[3X(-4)]X(-5)=3X[(-4)X(-5)]=

請以小組為單位,相互檢查,看計算對了嗎?

二、知識新天地

1、下面我們以小組為單位,仔細觀察上面的式子與結(jié)果,把你的發(fā)現(xiàn)相互交流交流。

2、怎么樣,在有理數(shù)運算律中,乘法的交換律,結(jié)合律以及分配律還成立嗎?

3、歸納、總結(jié)

乘法交換律:兩個數(shù)相乘,交換因數(shù)的位置,積o

即:ab=

乘法結(jié)合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積—

即:(ab)c=

4、例題4

用兩種方法計算(工+3—1)X12;

262

解法一:解法二:

三、學??酂o邊:

(課本P33練習)

7191

1、G85)X(-25)X(-4);2、(r-)X15X(-1-);3、(-------)X30;

871015

四、金秋爛漫時:

把你的收獲寫在這里:

五、萬里長征路:

1、看誰算得快,算得準

45

(1)7)X(—―)X—;(2)9—X18;

31418

7537

(3)-9X(-11)+12X(-9);(4)---+---、x36;

96418J

第14課時:1.4.2有理數(shù)的除法(1)

導學目標:1、理解除法是乘法的逆運算;

2、理解倒數(shù)概念,會求有理數(shù)的倒數(shù);

3、掌握除法法則,會進行有理數(shù)的除法運算;

導學重點:有理數(shù)的除法法則

導學難點:減少計算失誤

導學指導

一、改變舊世界

1)、小紅從家里到學校,每分鐘走50米,共走了20分鐘。

問小紅家離學校有米,列出的算式為

2)放學時,小紅仍然以每分鐘50米的速度回家,應該走分鐘。

列出的算式為________________________

從上面這個例子你可以發(fā)現(xiàn),有理數(shù)除法與乘法之間的關系是

3)寫出下列各數(shù)的倒數(shù)

-4的倒數(shù),3的倒數(shù),-2的倒數(shù);

二、知識新天地

1、小組合作完成

比較大?。?+(-4)8X(一!);

4

(-15)4-3(-15)X

---------3

(―1—)+(-2)(―1—)X(—―);

442

再相互交流、并與小學里導學的乘除方法進行類比與對比,

歸納有理數(shù)的除法法則:

1)、除以一個不等于0的數(shù),等于;

2)、兩數(shù)相除,同號得—,異號得,并把絕對值相,0除以任何一個不等于0的數(shù),

都得;

1.自學P34例5、例6

2.師生共同完成例7

三、學海苦無邊

1、練習:P35

2、練習:P36第1、2題

四、金秋爛漫時:

有理數(shù)的除法法則:

五、萬里長征路

1、計算

⑶375+訊

⑵0+(-1000);

2、練習冊P21(-)

第15課時:1.4.2有理數(shù)的除法(2)

導學目標:1、學會用計算器進行有理數(shù)的除法運算;

2、掌握有理數(shù)的混合運算順序;

導學重點:有理數(shù)的混合運算;

導學難點:運算順序的確定與性質(zhì)符號的處理;

導學指導

一、改變舊世界

1、計算:

(1)(-8)4-(-4)(2)(-9)4-3(3)(—0.1)+(—100)

2.有理數(shù)的除法法則:

二、知識新天地

1.例8計算

(1)(—8)+4+(-2)(2)(-7)X(-5)-90+(-15)

你的計算方法是先算法,再算法。

有理數(shù)加減乘除的混合運算順序應該是

寫出解答過程

2.自學完成例9(閱讀課本P36—P37頁內(nèi)容)

三、學??酂o邊

1、計算(P36練習)

(1)6-(—12)+(-3);(2)3X(—4)+(—28)+7;

(4)42x(—])+(—1)+(一0.25);

(3)(—48)4-8—(—25)X(—6);

2.P37練習

四、金秋爛漫時:

把你的收獲寫在這里:

五、萬里長征路

1、選擇題

(1)下列運算有錯誤的是()

A.;+(-3)=3X(-3)B.(―5)+(—=—5x(—2

C.8-(-2)=8+2D.2-7=(+2)+(-7)

(2)下列運算正確的是()

D.(-2)4-(-4)=2;

2、計算

1)、18—64-(—2)X2)11+(—22)—3X(—11);

第16課時:1.5.1有理數(shù)的乘方(1)

導學目標:1、理解有理數(shù)乘方的意義;

2、掌握有理數(shù)乘方運算;

3、經(jīng)歷探索有理數(shù)乘方的運算,獲得解決問題經(jīng)驗;

導學重點:有理數(shù)乘方的運算。

導學難點:有理數(shù)乘方的運算。

導學指導:

一、改變舊世界

1、看下面的故事:從前,有個“聰明的乞丐”他要到了一塊面包。他想,天天要飯?zhí)量?,如果?/p>

第一天吃這塊面包的一半,第二天再吃剩余面包的一半,……依次每天都吃前一天剩余面包的一半,

這樣下去,我就永遠不要去要飯了!

請你們交流討論,再算一算,如果把整塊面包看成整體“1”,那第十天他將吃到面包。

2、拉面館的師傅用一根很粗的面條,把兩頭捏合在一起拉伸,再捏合,再拉伸,反復多次,就能把

這根很粗的面條,拉成許多很細的面條.想想看,捏合次后,就可以拉出32根面條.

二、知識新天地

1、分小組合作導學P41頁內(nèi)容,然后再完成好下面的問題

1)叫乘方,叫做基,在式子a。中,a

叫做,n叫做

2)式子a”表示的意義是________________________________

3)從運算上看式子a\可以讀作,從結(jié)果上看式子a\可以讀

作;

2、將下列各式寫成乘方(即騫)的形式:

(1)(-2)X(-2)X(-2)X(-2)=.

(2)、(——)X(——)X(----)X(-------y)=;

4444

(3)x*x*x.............(2010個)=

3、例題,P41例1師生共同完成

從例題1可以得出:

負數(shù)的奇次塞是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論