計(jì)量經(jīng)濟(jì)學(xué)課件08_第1頁
計(jì)量經(jīng)濟(jì)學(xué)課件08_第2頁
計(jì)量經(jīng)濟(jì)學(xué)課件08_第3頁
計(jì)量經(jīng)濟(jì)學(xué)課件08_第4頁
計(jì)量經(jīng)濟(jì)學(xué)課件08_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

MultipleRegressionAnalysis

y=b0+b1x1+b2x2+...bkxk+u6.Heteroskedasticity1Economics20-Prof.AndersonWhatisHeteroskedasticity

Recalltheassumptionofhomoskedasticityimpliedthatconditionalontheexplanatoryvariables,thevarianceoftheunobservederror,u,wasconstantIfthisisnottrue,thatisifthevarianceofuisdifferentfordifferentvaluesofthex’s,thentheerrorsareheteroskedasticExample:estimatingreturnstoeducationandabilityisunobservable,andthinkthevarianceinabilitydiffersbyeducationalattainment2Economics20-Prof.Anderson.x

x1x2yf(y|x)ExampleofHeteroskedasticityx3..E(y|x)=b0+b1x3Economics20-Prof.AndersonWhyWorryAboutHeteroskedasticity?

OLSisstillunbiasedandconsistent,evenifwedonotassumehomoskedasticityThestandarderrorsoftheestimatesarebiasedifwehaveheteroskedasticityIfthestandarderrorsarebiased,wecannotusetheusualtstatisticsorFstatisticsorLMstatisticsfordrawinginferences4Economics20-Prof.AndersonVariancewithHeteroskedasticity5Economics20-Prof.AndersonVariancewithHeteroskedasticity6Economics20-Prof.AndersonRobustStandardErrors

Nowthatwehaveaconsistentestimateofthevariance,thesquarerootcanbeusedasastandarderrorforinferenceTypicallycalltheserobuststandarderrorsSometimestheestimatedvarianceiscorrectedfordegreesoffreedombymultiplyingbyn/(n–k–1)Asn→∞it’sallthesame,though7Economics20-Prof.AndersonRobustStandardErrors(cont)

Importanttorememberthattheserobuststandarderrorsonlyhaveasymptoticjustification–withsmallsamplesizeststatisticsformedwithrobuststandarderrorswillnothaveadistributionclosetothet,andinferenceswillnotbecorrectInStata,robuststandarderrorsareeasilyobtainedusingtherobustoptionofreg8Economics20-Prof.AndersonARobustLMStatistic

RunOLSontherestrictedmodelandsavetheresiduals?Regresseachoftheexcludedvariablesonalloftheincludedvariables(qdifferentregressions)andsaveeachsetofresiduals?1,?2,…,?qRegressavariabledefinedtobe=1

on?1?,?2?,…,?q

?,withnointerceptTheLMstatisticisn–SSR1,whereSSR1isthesumofsquaredresidualsfromthisfinalregression9Economics20-Prof.AndersonTestingforHeteroskedasticity

EssentiallywanttotestH0:Var(u|x1,x2,…,xk)=s2,whichisequivalenttoH0:E(u2|x1,x2,…,xk)=E(u2)=s2Ifassumetherelationshipbetweenu2andxjwillbelinear,cantestasalinearrestrictionSo,foru2=d0+d1x1+…+dk

xk+v)thismeanstestingH0:d1=d2=…=dk=010Economics20-Prof.AndersonTheBreusch-PaganTest

Don’tobservetheerror,butcanestimateitwiththeresidualsfromtheOLSregressionAfterregressingtheresidualssquaredonallofthex’s,canusetheR2toformanForLMtestTheFstatisticisjustthereportedFstatisticforoverallsignificanceoftheregression,F=[R2/k]/[(1–

R2)/(n–k–1)],whichisdistributedFk,n–k-1TheLMstatisticisLM=nR2,whichisdistributedc2k11Economics20-Prof.AndersonTheWhiteTest

TheBreusch-PagantestwilldetectanylinearformsofheteroskedasticityTheWhitetestallowsfornonlinearitiesbyusingsquaresandcrossproductsofallthex’sStilljustusinganForLMtotestwhetherallthexj,xj2,andxjxharejointlysignificantThiscangettobeunwieldyprettyquickly12Economics20-Prof.AndersonAlternateformoftheWhitetest

ConsiderthatthefittedvaluesfromOLS,?,areafunctionofallthex’sThus,?2willbeafunctionofthesquaresandcrossproductsand?and?2canproxyforallofthexj,xj2,andxjxh,soRegresstheresidualssquaredon?and?2andusetheR2toformanForLMstatisticNoteonlytestingfor2restrictionsnow13Economics20-Prof.AndersonWeightedLeastSquares

Whileit’salwayspossibletoestimaterobuststandarderrorsforOLSestimates,ifweknowsomethingaboutthespecificformoftheheteroskedasticity,wecanobtainmoreefficientestimatesthanOLSThebasicideaisgoingtobetotransformthemodelintoonethathashomoskedasticerrors–calledweightedleastsquares14Economics20-Prof.AndersonCaseofformbeingknownuptoamultiplicativeconstant

SupposetheheteroskedasticitycanbemodeledasVar(u|x)=s2h(x),wherethetrickistofigureoutwhath(x)≡

hilookslikeE(ui/√hi|x)=0,becausehiisonlyafunctionofx,andVar(ui/√hi|x)=s2,becauseweknowVar(u|x)=s2hiSo,ifwedividedourwholeequationby√hiwewouldhaveamodelwheretheerrorishomoskedastic

15Economics20-Prof.AndersonGeneralizedLeastSquares

EstimatingthetransformedequationbyOLSisanexampleofgeneralizedleastsquares(GLS)GLSwillbeBLUEinthiscaseGLSisaweightedleastsquares(WLS)procedurewhereeachsquaredresidualisweightedbytheinverseofVar(ui|xi)16Economics20-Prof.AndersonWeightedLeastSquares

WhileitisintuitivetoseewhyperformingOLSonatransformedequationisappropriate,itcanbetedioustodothetransformationWeightedleastsquaresisawayofgettingthesamething,withoutthetransformationIdeaistominimizetheweightedsumofsquares(weightedby1/hi)17Economics20-Prof.AndersonMoreonWLS

WLSisgreatifweknowwhatVar(ui|xi)lookslikeInmostcases,won’tknowformofheteroskedasticityExamplewheredoisifdataisaggregated,butmodelisindividuallevelWanttoweighteachaggregateobservationbytheinverseofthenumberofindividuals18Economics20-Prof.AndersonFeasibleGLS

Moretypicalisthecasewhereyoudon’tknowtheformoftheheteroskedasticityInthiscase,youneedtoestimateh(xi)Typically,westartwiththeassumptionofafairlyflexiblemodel,suchas

Var(u|x)=s2exp(d0+d1x1+…+dkxk)Sincewedon’tknowthed,mustestimate19Economics20-Prof.AndersonFeasibleGLS(continued)

Ourassumptionimpliesthatu2=s2exp(d0+d1x1+…+dkxk)vWhereE(v|x)=1,thenifE(v)=1ln(u2)=a0

+d1x1+…+dkxk+eWhereE(e)=1andeisindependentofxNow,weknowthat?isanestimateofu,sowecanestimatethisbyOLS20Economics20-Prof.AndersonFeasibleGLS(continued)

Now,anestimateofhisobtainedas?

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論