




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
MultipleRegressionAnalysis
y=b0+b1x1+b2x2+...bkxk+u6.Heteroskedasticity1Economics20-Prof.AndersonWhatisHeteroskedasticity
Recalltheassumptionofhomoskedasticityimpliedthatconditionalontheexplanatoryvariables,thevarianceoftheunobservederror,u,wasconstantIfthisisnottrue,thatisifthevarianceofuisdifferentfordifferentvaluesofthex’s,thentheerrorsareheteroskedasticExample:estimatingreturnstoeducationandabilityisunobservable,andthinkthevarianceinabilitydiffersbyeducationalattainment2Economics20-Prof.Anderson.x
x1x2yf(y|x)ExampleofHeteroskedasticityx3..E(y|x)=b0+b1x3Economics20-Prof.AndersonWhyWorryAboutHeteroskedasticity?
OLSisstillunbiasedandconsistent,evenifwedonotassumehomoskedasticityThestandarderrorsoftheestimatesarebiasedifwehaveheteroskedasticityIfthestandarderrorsarebiased,wecannotusetheusualtstatisticsorFstatisticsorLMstatisticsfordrawinginferences4Economics20-Prof.AndersonVariancewithHeteroskedasticity5Economics20-Prof.AndersonVariancewithHeteroskedasticity6Economics20-Prof.AndersonRobustStandardErrors
Nowthatwehaveaconsistentestimateofthevariance,thesquarerootcanbeusedasastandarderrorforinferenceTypicallycalltheserobuststandarderrorsSometimestheestimatedvarianceiscorrectedfordegreesoffreedombymultiplyingbyn/(n–k–1)Asn→∞it’sallthesame,though7Economics20-Prof.AndersonRobustStandardErrors(cont)
Importanttorememberthattheserobuststandarderrorsonlyhaveasymptoticjustification–withsmallsamplesizeststatisticsformedwithrobuststandarderrorswillnothaveadistributionclosetothet,andinferenceswillnotbecorrectInStata,robuststandarderrorsareeasilyobtainedusingtherobustoptionofreg8Economics20-Prof.AndersonARobustLMStatistic
RunOLSontherestrictedmodelandsavetheresiduals?Regresseachoftheexcludedvariablesonalloftheincludedvariables(qdifferentregressions)andsaveeachsetofresiduals?1,?2,…,?qRegressavariabledefinedtobe=1
on?1?,?2?,…,?q
?,withnointerceptTheLMstatisticisn–SSR1,whereSSR1isthesumofsquaredresidualsfromthisfinalregression9Economics20-Prof.AndersonTestingforHeteroskedasticity
EssentiallywanttotestH0:Var(u|x1,x2,…,xk)=s2,whichisequivalenttoH0:E(u2|x1,x2,…,xk)=E(u2)=s2Ifassumetherelationshipbetweenu2andxjwillbelinear,cantestasalinearrestrictionSo,foru2=d0+d1x1+…+dk
xk+v)thismeanstestingH0:d1=d2=…=dk=010Economics20-Prof.AndersonTheBreusch-PaganTest
Don’tobservetheerror,butcanestimateitwiththeresidualsfromtheOLSregressionAfterregressingtheresidualssquaredonallofthex’s,canusetheR2toformanForLMtestTheFstatisticisjustthereportedFstatisticforoverallsignificanceoftheregression,F=[R2/k]/[(1–
R2)/(n–k–1)],whichisdistributedFk,n–k-1TheLMstatisticisLM=nR2,whichisdistributedc2k11Economics20-Prof.AndersonTheWhiteTest
TheBreusch-PagantestwilldetectanylinearformsofheteroskedasticityTheWhitetestallowsfornonlinearitiesbyusingsquaresandcrossproductsofallthex’sStilljustusinganForLMtotestwhetherallthexj,xj2,andxjxharejointlysignificantThiscangettobeunwieldyprettyquickly12Economics20-Prof.AndersonAlternateformoftheWhitetest
ConsiderthatthefittedvaluesfromOLS,?,areafunctionofallthex’sThus,?2willbeafunctionofthesquaresandcrossproductsand?and?2canproxyforallofthexj,xj2,andxjxh,soRegresstheresidualssquaredon?and?2andusetheR2toformanForLMstatisticNoteonlytestingfor2restrictionsnow13Economics20-Prof.AndersonWeightedLeastSquares
Whileit’salwayspossibletoestimaterobuststandarderrorsforOLSestimates,ifweknowsomethingaboutthespecificformoftheheteroskedasticity,wecanobtainmoreefficientestimatesthanOLSThebasicideaisgoingtobetotransformthemodelintoonethathashomoskedasticerrors–calledweightedleastsquares14Economics20-Prof.AndersonCaseofformbeingknownuptoamultiplicativeconstant
SupposetheheteroskedasticitycanbemodeledasVar(u|x)=s2h(x),wherethetrickistofigureoutwhath(x)≡
hilookslikeE(ui/√hi|x)=0,becausehiisonlyafunctionofx,andVar(ui/√hi|x)=s2,becauseweknowVar(u|x)=s2hiSo,ifwedividedourwholeequationby√hiwewouldhaveamodelwheretheerrorishomoskedastic
15Economics20-Prof.AndersonGeneralizedLeastSquares
EstimatingthetransformedequationbyOLSisanexampleofgeneralizedleastsquares(GLS)GLSwillbeBLUEinthiscaseGLSisaweightedleastsquares(WLS)procedurewhereeachsquaredresidualisweightedbytheinverseofVar(ui|xi)16Economics20-Prof.AndersonWeightedLeastSquares
WhileitisintuitivetoseewhyperformingOLSonatransformedequationisappropriate,itcanbetedioustodothetransformationWeightedleastsquaresisawayofgettingthesamething,withoutthetransformationIdeaistominimizetheweightedsumofsquares(weightedby1/hi)17Economics20-Prof.AndersonMoreonWLS
WLSisgreatifweknowwhatVar(ui|xi)lookslikeInmostcases,won’tknowformofheteroskedasticityExamplewheredoisifdataisaggregated,butmodelisindividuallevelWanttoweighteachaggregateobservationbytheinverseofthenumberofindividuals18Economics20-Prof.AndersonFeasibleGLS
Moretypicalisthecasewhereyoudon’tknowtheformoftheheteroskedasticityInthiscase,youneedtoestimateh(xi)Typically,westartwiththeassumptionofafairlyflexiblemodel,suchas
Var(u|x)=s2exp(d0+d1x1+…+dkxk)Sincewedon’tknowthed,mustestimate19Economics20-Prof.AndersonFeasibleGLS(continued)
Ourassumptionimpliesthatu2=s2exp(d0+d1x1+…+dkxk)vWhereE(v|x)=1,thenifE(v)=1ln(u2)=a0
+d1x1+…+dkxk+eWhereE(e)=1andeisindependentofxNow,weknowthat?isanestimateofu,sowecanestimatethisbyOLS20Economics20-Prof.AndersonFeasibleGLS(continued)
Now,anestimateofhisobtainedas?
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 食品安全員考試常見反思與改進建議試題及答案
- 量化研究方法與應(yīng)用試題及答案
- 2025版合同履行保證書范本
- 2025年熔化焊接與熱切割證考試題庫及答案
- 防拐防騙課件
- 暑假安全知識普及教育課
- 2025年物業(yè)服務(wù)合同書
- 2025健身房轉(zhuǎn)讓合同范本下載
- 高校改革策略與實施路徑探索
- 汽車維修工職業(yè)發(fā)展方向探討試題及答案
- 浙江省金麗衢十二校2025屆高三下學(xué)期二模試題 地理 含解析
- 2024年員工知識產(chǎn)權(quán)與保密協(xié)議范本:企業(yè)知識產(chǎn)權(quán)保護實務(wù)3篇
- JGJ46-2024 建筑與市政工程施工現(xiàn)場臨時用電安全技術(shù)標(biāo)準(zhǔn)
- GB 17790-2008家用和類似用途空調(diào)器安裝規(guī)范
- 中醫(yī)體質(zhì)辨識共57張課件
- 魔幻泡泡秀七彩體驗館介紹
- 育苗花卉種子采購合同 修
- 表面工程學(xué)第十二章-表面微細加工技術(shù)
- 聚乙烯塑料袋檢驗記錄新
- 《建筑樁基技術(shù)規(guī)范》JGJ94-94送審報告
- 員工入職確認(rèn)單
評論
0/150
提交評論